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Abstract

Every ten years, after a national census, all states must redraw a legislative districting map with
the apportioned number of districts. Gerrymandering—methods by which political parties may attempt
to gain electoral advantages by modifying district boundaries—is becoming more common in these re-
districting processes. While districting maps can be, and have been, deemed illegal in court, there is
no rigorous process for determining the extent to which gerrymandering is present in a map. In our
analysis, we utilize the existing framework of ensemble analysis with some modifications to quantify and
contextualize the level of gerrymandering present in 2010, 2020, and proposed 2020 maps for Minnesota
and the 2010 map for Texas. We generate a representative sample of all legal districting plans for the
given state to identify whether the plan of interest is an outlier on a number of physical, demographic,
and partisan metrics of gerrymandering. Additionally, through ensemble analysis, we discover whether
underlying characteristics of a state—such as population distribution, geography, etc.—result in a natural
bias towards a particular party. We find Minnesota has a slight bias towards benefiting Republicans in
our ensemble. For some metrics, the proposed plans appear within the expected range of scores; however,
there is slight evidence of cracking and packing of Democrats, as well as of Black and Hispanic voters.
Our Texas results show a Republican bias. The 2010 Texas map has multiple measures that lean in favor
of the Republican Party. There is some evidence of cracking and packing of Democrats, as well as strong
evidence of packing and cracking Black and Hispanic voters in the 2010 map.

1 Introduction

We begin by defining what we mean by gerryman-
dering.

Definition 1.1. Gerrymandering is the practice
of drawing electoral districts to benefit one group
(political party or racial/ethnic group). Political
or Partisan Gerrymandering is drawing bound-
aries that benefit one party, while Racial Gerry-
mandering involves diluting the voting power of
members of ethnic or linguistic minority groups. [1]

The media continues to claim that gerrymander-
ing is becoming more present. With the redrawing
of every state’s maps after the 2020 census, many
sources have claimed that states are accepting maps
which are even more intensely gerrymandered than
the previous maps, with many unfairly favoring the
Republican party. Nonetheless, court challenges to
gerrymandered maps have become even more diffi-
cult.

In 1986, the Supreme Court ruled that extreme
partisan gerrymandering is unconstitutional [2, 3].

That is, districting is illegal if it “consistently de-
grades a voter’s or a group of voters’ influence in
the political process as a whole” [1]. However, the
court did not agree on a constitutional standard
for evaluating partisan gerrymandering [1, 3], and
the Supreme Court has repeatedly failed to strike
down districting maps, despite clear use of classic
gerrymandering tricks [3]. In the following years,
Supreme Court decisions went back and forth re-
garding whether gerrymandering could be settled by
the court itself [2, 3]. In 2004, the Supreme Court
rejected all available tests for gerrymandering, leav-
ing no official method for accounting whether a dis-
tricting map was fair or not [2]. In 2019, the court
ruled that “partisan gerrymandering claims present
political questions beyond the reach of the federal
courts” [1].

We attempt to implement a tool which better
identifies and visualizes how gerrymandered a par-
ticular map actually is. Many states, due to their
population and geographic distribution, have under-
lying bias towards one major party or the other. We
use a method which is able to detect and quantify
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how biased a typical legal map is for a given state
due to these factors. We are then able to determine
how gerrymandered a particular map might be be-
yond this baseline bias.

2 Background Info and Defini-
tions

2.1 History of Gerrymandering

The term “gerrymander” arose in 1812 when the
governor of Massachusetts, Elbridge Gerry, enacted
a law that altered the state’s senatorial districts and
caused the Federalist Party’s vote to be underrepre-
sented. After a satirical cartoonist, Elkanah Tisdale,
noticed one of these newly outlined districts resem-
bled a salamander, he published a cartoon version
of the district in the Boston Gazette. He titled the
cartoon “The Gerrymander.” [1, 5]

Gerrymandering intensified when Black men
earned the right to vote. The Black population was
often crammed into one district in each state, leav-
ing the remaining districts predominantly white and
the Black population underrepresented in the state’s
congressional delegation [6].

2.2 Redistricting Process

Every ten years, the U.S. Census Bureau conducts
a national census. Based on the population results,
each state is apportioned a certain number of rep-
resentatives. Then, each state is divided into this
number of districts, where each district has close to
the same number of residents. Each representative
will be elected by the individuals living in their par-
ticular district.

The exact process of redistricting varies by state.
Some states have apolitical committees to draw their
new map, while in other states, the state legislature
will draw the map. Since we focus our analysis on
two states, we will discuss the particular procedures
in these two states.

2.2.1 Minnesota Redistricting

In Minnesota, the State legislature is responsible for
the redistricting process. The legislature – with the
assistance of the Nonpartisan Legislative Coordina-
tion Commission – will create draft congressional
and legislative redistricting plans in the form of bills.
The plan must then pass as a typical bill would with
a simple majority. Finally, the governor must sign
the proposed plan into law. The deadline for having

an approved map through this avenue is 25 weeks
before the election.

In practice, however, Minnesota’s divided legis-
lature typically cannot pass a redistricting plan. In
this situation, once the 25-week deadline is reached,
the court is responsible for imposing a new plan.
Since 1980, every congressional map in Minnesota
has been drawn in this way by the courts. As a
result, we will analyze three of the court-proposed
plans for Minnesota, including the approved plan.
While Republicans and Democrats in the legislature
have also proposed maps, it is historically unlikely
that these maps would be enacted into law. [7]

In Minnesota, two plans were proposed as bills
by Democrats, and one plan was proposed as a bill
by the Republicans. We did not analyze any of these
maps, however, since they are extremely unlikely to
be passed into law. When we began writing this
paper, Minnesota had four court-proposed maps—
the Wattson, Anderson, Sachs, and Corrie Plaintiff
Plans. Just last week, Minnesota approved a map
for the new cycle, which is largely a combination of
the Wattson and Sachs plans. As a result, we will
analyze the Wattson and Sachs Plaintiff Plans as
well as the new 2020 map for Minnesota.

2.2.2 Texas Redistricting

As in Minnesota, the Texas State Legislature is
responsible for drawing the state’s congressional
maps. Unlike Minnesota, however, both bodies of
the Texas legislature are controlled by Republicans,
so a map has always been approved through this
process. [8]

A new 2020 map was approved for Texas be-
fore we began analysis. Without access to 2020 cen-
sus data, however, we determined that analyzing the
2010 Texas map would lead to more valuable results.

2.3 Legal Requirements for Districts

Each state varies in their exact requirements for
what makes a district legal. However, in general,
there are four main characteristics that districts
across all states must follow: 1) districts must have
equal population, 2) districts must be as compact
as possible (see Section 3.1), 3) districts must not
divide existing political subdivisions wherever pos-
sible, and 4) districts must be compliant with the
Voting Rights Act (see Section 2.3.1).

Many states have recently begun noting that
“communities of interest” must not be divided be-
tween multiple districts. There is no rigorous defi-
nition for what these communities of interest are,
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Figure 1: Images from the redistricting plan published in the Boston Gazette on March 9, 1812. [4]

(a) “The Gerry-mander” by Elkanah Tisdale (b) Actual map of the Gerry-mander

Figure 2: Massachusetts State senate district drawn in 1812.
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however. Racial and ethnic groups—such as the
Somali population in Minneapolis—are considered
communities of interest. Sometimes, smaller politi-
cal groups or groups with some shared identity are
also considered communities of interest to be main-
tained in one district.

Some states impose additional requirements.
This year, Minnesota notes that the reservation
lands of federally recognized American Indian tribes
could not be split into multiple districts if there was
a possible way to keep them together [9].

2.3.1 Voting Rights Act

The Voting Rights Act of 1965 (VRA) aimed to
eliminate racial discrimination in voting. Beyond
provisions such as outlawing literacy tests as a re-
quirement to vote, the VRA also took several steps
to prevent racial gerrymandering in the redistrict-
ing process. Specifically, redistricting plans must
not result in the “abridgement of the right of any
citizen of the United States to vote on account of
race or color,” and violations occur if “it is shown
that the political processes leading to nomination
or election are not equally open to participation
by members of a class of citizens in that its mem-
bers have less opportunity than other members of
the electorate to participate in the political process
and to elect representatives of their choice.”[10] The
VRA thus provides an avenue to challenge redis-
tricting plans in court on the basis of racial ger-
rymandering. However, in Shelby County v. Holder
(2013) the Supreme Court ruled section 4(b) of
the VRA unconstitutional, making it considerably
harder to challenge redistricting plans for potential
VRA violations.[11]

2.4 Cracking and Packing

Two of the fundamental ideas around gerrymander-
ing are packing and cracking. Packing and cracking
are both methods designed to manipulate the distri-
bution of voters in order to minimize the state-wide
voting power of the opposing party.

Definition 2.1. We say a political party or
racial/ethnic minority group is packed into one or
more districts when that district is composed largely
of that group.

Definition 2.2. We say a political party or
racial/ethnic minority group is cracked into several
districts when each of these several districts contains
a small percentage of individuals in this group.

Note that both of these methods can lead to ger-
rymandering. If one political party is packed into
just a few districts, while they will easily win these
few districts, the remaining districts may be won
by only a small margin by the other political party.
Similarly, if one political party is cracked into sev-
eral districts, they will have just under a majority in
each district, and they will be unable to win many
seats. Packing and cracking can be used to create
maps which give a far higher proportion of seats to
one party than their proportion of votes won.

In reality, cracking and packing are often used in
tandem. One party may crack a large proportion of
the other party into one district which they will win
by a large margin. Then, the remaining constituents
for the opposing party will be cracked into the re-
maining districts. As a result, the cracked/packed
party will win one district by a large margin and
lose several districts by only a small margin. [13]

3 Existing Metrics for Quanti-
fying Gerrymandering

3.1 Compactness

One of the simplest ways to quantify the level of ger-
rymandering in a redistricting plan is to evaluate the
geometric compactness of districts. Here, the term
compactness refers not to a particular mathematical
definition, but rather, the normal connotation of the
word.

Definition 3.1. We consider a district to be com-
pact if it is regularly shaped without significant pro-
trusions.

There are numerous ways to calculate the geo-
metric compactness of a shape, each with their own
benefits and drawbacks. We now look at three com-
pactness measures, and provide our argument for
the use of the Polsby-Popper measure in our ensem-
ble analysis.

3.1.1 Length-Width Measure of
Compactness

Definition 3.2.

LW(d) =
min(ld, wd)

max(ld, wd)

The Length-Width measure of compactness is the
ratio of the length to the width of the minimum
bounding rectangle around the district.[14]
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Figure 3: Consider the theoretical state containing four districts and with 12 individuals in the green party
and eight in the purple party. In drawing these four districts, the purple party can be cracked between all
four districts, winning no districts, or packed into one district, winning just that district. [12]

Scores closer to one mean that the minimum
bounding rectangle is closer to being a square, a pos-
sible indication that the district is compact. Accord-
ingly, a score closer to zero indicates a non-compact
district. The Length-Width measure utilizes the rel-
ative compactness of a square in comparison to a
rectangle, and has been used during the redistricting
process by several Western states that have straight
borders. However, the complex borders of the East-
ern states demand a more robust measure.

3.1.2 Reock Measure of Compactness

Definition 3.3.

R(d) =
Ad

AMBC

The Reock measure of compactness is the ratio of
the area of the district to the area of the minimum
bounding circle around the district.

Again, scores close to one are an indication of the
compactness of the district, while scores close to zero
indicate non-compactness. While the Reock mea-
sure does utilize the circle’s ability to pack more area
into a perimeter than any other shape, the measure
is susceptible to protrusions angled in different ways
producing different compactness scores, depending
on whether the angle of the protrusion expands the

diameter of the minimum bounding circle.[15] Since
a protrusion in a district to include some popula-
tion group can indicate gerrymandering, we desire a
compactness measure that is unaffected by the angle
of the protrusion.

3.1.3 Polsby-Popper Measure of
Compactness

Definition 3.4.

PP(d) =
4πAd

P 2
d

The Polsby-Popper measure of compactness,
sometimes called the isoperimetric quotient, is the
ratio of the area of the district to the area of a cir-
cle with circumference equal to the perimeter of the
district.

Since the Polsby-Popper measure relies only on
the perimeter and area of the district itself, all pro-
trusions are treated equally, regardless of the angle
they protrude from the district.[15] For this reason,
Polsby-Popper is a better measure of compactness
than both Reock and Length-Width, and we accord-
ingly use it in the construction of our ensemble.

Compactness measures aim to penalize strangely
shaped districts that pack or crack certain politi-
cal, racial, or socioeconomic groups. However, com-
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pactness measures are affected by the oddities of
American geography (Maryland’s panhandle, for ex-
ample), so non-compact districts are not inherently
gerrymandered. Conversely, a district can be gerry-
mandered while still being compact. This brings us
to non-geometric measures of gerrymandering.

3.2 Efficiency Gap

One way to measure whether a map has packing
and cracking is to compare the number of “wasted
votes” between the parties. We define what it means
for votes to be “wasted” as follows.

Definition 3.5. A vote is considered to be a
wasted vote if it is cast for the winning party in a
winning district and beyond the 50% threshold re-
quired to win a district or if it is cast for the losing
party in a district.

Definition 3.6. The Efficiency Gap is a measure
which describes the difference in quantity of wasted
votes between parties (in this case the Democratic
and Republican parties). For a given plan ε, the
efficiency gap eg(ε) is defined as

eg(ε) =
WastedR(ε)−WastedD(ε)

Total Votes Cast in ε
.

Observe that, according to this definition, a neg-
ative efficiency gap implies that the Democratic
party incurs more wasted votes than the Republi-
can party, while a positive efficiency gap implies the
opposite. [16]

3.3 Seats-Votes Curve

3.3.1 Generating a Seats-Votes Curve

The seats-votes curve is another powerful tool used
to detect gerrymandering in a redistricting plan.
The curve plots the proportion of seats won by a
party in a Congressional election against the pro-
portion of the state-wide vote won by that party. To
demonstrate how we construct a seats-votes curve,
first consider the following definitions:

Definition 3.7. A party’s Vote Share in a given
election is taken to be the percentage of votes cast
for that party. When we simplify an election to con-
sider only votes for two parties (Party A and Party
B), the vote share for Party A is equal to

Votes for Party A

Votes for Party A + Votes for Party B

Definition 3.8. A party’s Seat Share in a given
election is taken to be the percentage of seats that
party won in the election. In all of our considered
elections, no seats were won by third party candi-
dates, so we did not need to make simplifications to
account for the fact that there are more than two
parties.

Definition 3.9. Under Uniform Party Swing,
we assume that if the vote share for one party in-
creases by one percent, then within each district, the
vote share for that party increases by one percent as
well.

The observed results from the election of choice
(that is, the actual seat share and vote share from
this election) provide one point for the seats-votes
curve. The rest of the curve must be generated.
To do this, we rely on uniform party swing defined
above. Beginning at the point of the real election,
we either add or take away one percent of the vote
from the party we’re drawing the seats-votes curve
for. We then check, given our election data and re-
lying on uniform party swing, how many seats that
party would have won. We continue in this matter,
adding and removing from the vote share for that
party, until we have produced a full step-function
which shows at which vote shares the party moves
from winning x seats to x+ 1 seats. It is helpful to
illustrate this process for a hypothetical election.

Suppose the actual results of a Congressional
election in a state with ten districts give party A
60% of the seats with 60% of the vote. Now, uni-
formly remove votes from party A across all districts
until party A has only 59% of the statewide vote. If
these changes do not result in any seat flipping, then
party A would have still won 60% of the seats with
only 59% of the vote. However, if the changes do
result result in a seat flipping, then party A would
have only won 50% of the seats at 59% of the vote,
and the seat-votes curve would jump down in a step-
wise manner. The rest of the seat-votes curve is
filled in using this uniform swing method.

Plots of the seats-votes curve often include one
curve for each party; however, these curves must be
mirror images of each other. That is, if one party
receives 20% of the seat share at 30% of the vote
share, then the other party must receive 80% of the
seat share at 70% of the vote share.

3.3.2 Metrics Computed from Seats-Votes
Curve

The seats-votes curve provides a graphical interpre-
tation of several partisan gerrymandering measures.
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Figure 4: Example seats-votes curve of one party

Definition 3.10. The Partisan Bias of a redis-
tricting plan is the difference between a party’s seat
share at 50% of the vote and 50%.

Partisan bias can be graphically interpreted as
the gap in seat share between the curve at 50% of the
vote, and 50% of the seats. While certainly a good
initial measure to possibly detect an unfair redis-
tricting plan, partisan bias only compares the curves
for both parties at a singular vote share, and indi-
cations of political gerrymandering can occur else-
where.

Definition 3.11. The Partisan Symmetry of a
redistricting plan is the average distance between
the seat-votes curves of each party over a chosen
range of vote shares.

Partisan symmetry is most commonly calculated
over the interval spanning 45% and 55% of the vote.
The seats-votes curve also captures other features of
a redistricting plan, beyond just having the poten-
tial to indicate an imbalance in seat share relative
to vote share. Features like the slope of the seat-
votes curve can indicate the competitiveness of the
redistricting plan.

Definition 3.12. The Responsiveness of the
seats-votes curve is the average slope of the curve
over a chosen range of vote shares, typically around
45% to 55%.

A steeper slope would indicate that a party could
gain significant seat share by only gaining a small
amount of the vote share, implying that multiple
districts are separated by a narrow vote margin.
Conversely, a shallow slope implies that not that
many districts are separated by a narrow vote mar-
gin, potentially indicating an incumbent protection
gerrymander. Therefore, the shape of the seats-
votes curve can help reveal the political strategies
underlying a redistricting plan.

Going even further, analysis of the end behav-
ior1 of the seats votes curve can also help identify
packing and cracking in a redistricting plan. In a
heavily packed district, party A seeks to waste a
large number of the party B’s votes by creating a
super majority for the opposing party (effectively
taking away votes for party B in other districts).
The resulting packed district will almost certainly
be won by the party B, even at low overall vote
shares since most of their votes are being cast in the
packed district. Accordingly, the seat-votes curve

1Behavior near 0% vote share and 100% vote share.
2The curve for party B will jump to seat-share value equal to 1

D
, where D is total number of districts in the state.
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for party B will jump up2 at a vote share close to
zero, leaving evidence of the heavily packed district.
Consequently, the seats-votes curve for party A will
not reach 100% of the seat share until values of vote
share get close to 100%, leaving evidence of party
A’s cracking strategy.

3.4 Mean-Median

The mean-median metric also attempts to measure
the amount of cracking and packing present in a
given map [17]. Whenever we consider a distribu-
tion, if the mean and median are different, this im-
plies some skew in our data. If cracking and packing
is present in a state, then the median district-wide
vote share would be skewed, leading to a nonzero
mean-median. This leads to our definition of this
measure:

Definition 3.13. The Mean-Median for a given
districting plan compares the state-wide vote share
for one party to the median district-wide vote share
for that same party. For a given plan ε, the mean-
median mm(ε) is defined, for a given party A, as
the difference between the state-wide vote share of
party A and the median district-wide vote share for
party A.

A negative value implies that the map favors
Party A, while a positive value implies that the
map favors Party B[17]. In our analysis, we choose
to compute the mean-median using the Republican
Party as Party A, meaning a negative mean-median
implies that the map favors Republican Party.

A nice interpretation for the mean-median is that
50% + mm(ε) gives the vote share the Republican
Party would need to win to gain 50% of the seats in
a given districting plan for a state. Note this relates
nicely to the seats-votes curve as well, as it describes
the relationship between seat share and vote share
at 50% of the vote.

3.5 Partisan Gini

Partisan gini is a score meant to quantify the area
between the seats-votes curves of the two parties. As
before, let ε denote a particular redistricting map,
and let n denote the number of districts in ε. Let
VR,i(ε) denote the Republican vote share of the dis-
trict with the ith highest Republican vote share, and
let VD,i(ε) denote the Democratic vote share of the
district with the ith highest Democratic vote share.

Also, let VR,avg(ε) denote the average Republi-
can vote share, and let VD,avg(ε) denote the aver-
age Democratic vote share. Note that VR,avg(ε) =

1 − VD,avg(ε) and, similarly, the Republican vote
share of the district with the ith highest Republican
vote share is equivalent to 1 minus the Democratic
vote share of the district with the (n−i+1)th highest
Democratic vote share.

The partisan gini for a given redistricting map ε
is computed as follows:

pg(ε) =

n∑
i=1

|(VR,i(ε)− VR,avg(ε))− (VD,i(ε)− VD,avg(ε))|
n

.

Since the seats votes curve is a step function, then
the partisan gini is essentially the difference between
the Republican vote share to win i seats and the
Democratic vote share to win i seats, multiplied by
the “height” of gaining a seat, for i ∈ [1, n]. The
true partisan gini is modified slightly to account for
overall vote shares different from 50%, but this de-
scription gives an intuitive sense of the metric.

While most metrics produce a negative value if
they favor Republicans and a positive value if they
favor Democrats, notice that partisan gini is an
absolute value of the distance between the curves.
That is, a greater distance between the curves in-
dicates a greater difference between seat shares at
various vote shares, and thus indicates some sort of
inequality between the parties. A partisan gini value
of 0 indicates that the seats-votes curves of the two
parties are equal, so each party would receive ex-
actly the same number of seats at any given vote
share for both parties.

4 Introduction to Ensemble
Analysis

All previously mentioned metrics of gerrymandering
attempt to measure how gerrymandered a map is in
just one number. They do not account for the ge-
ographical characteristics of a given state nor the
distribution of population throughout the state. In
this way, these measures all assume that a value of
0 makes for a “fair” map, ignoring the fact that un-
intentional bias is nearly always present in several
states based on their geography and population dis-
tribution alone. Namely, densely-packed cities of-
ten have higher concentrations of Democrats, while
rural areas tend to be more Republican. This al-
most always leads to a few districts with a large
Democratic majority and several districts with only
a slight Republican majority.

This quote from one of the leading mathemati-
cians working on gerrymandering, Moon Duchin,
sums up this concept:
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Gerrymandering is a fundamentally mul-
tidimensional problem, so it is mani-
festly impossible to convert that into a
single number without a loss of informa-
tion that is bound to produce many false
positives or false negatives for gerryman-
dering.

Ensemble analysis—the technique used by
Duchin and in our paper—attempts to combat this
principle by comparing the above metrics for a pro-
posed map to the distribution of metrics given for a
generated set of random and legal maps. Ensemble
analysis doesn’t produce one number that indicates
how gerrymandered a proposed map is, but instead,
it gives a way to compare whether a proposed map
is “unusual” compared to the set of all possible legal
maps that could have been drawn in that state. In
this way, ensemble analysis no longer reduces gerry-
mandering to a single-dimensional answer, allowing
us to better determine when gerrymandering is and
is not present.

To better understand the specifics of ensemble
analysis, we must first define what an ensemble is.

Definition 4.1. An ensemble for a given state is a
set of random, legal maps which is representative of
the set of all possible legal maps in this state. The
ensemble is created using no partisan data.

The core idea of ensemble analysis, then, is to
evaluate whether a map for a state is gerrymandered
by comparing it to the maps in the ensemble, which
by definition have no intentional bias towards a cer-
tain party. Once an ensemble exists, we can com-
pare characteristics (such as efficiency gap, partisan
bias, responsiveness, etc.) of a proposed map to the
distribution of values for maps in the ensemble. We
may then identify whether the proposed map is an
outlier or whether it has values comparable to a typ-
ical map in the ensemble. While outlier maps need
not be gerrymandered, these maps are unusual for
a state. This may mean the map is gerrymandered.

Conversely, if a map is suspected to be gerryman-
dered, we expect it to be an outlier in the ensem-
ble in at least some metrics. This provides stronger
supporting evidence of the claim than any of the
previously mentioned metrics.

5 Methods

5.1 Drawing Maps with a Markov
Chain

5.1.1 Data and Gerrychain Software
Package

Our data comes from the Metric Geometry and Ger-
rymandering Group (MGGG) Redistricting Lab at
Tisch College of Tufts University. MGGG aggre-
gated state demographic and geographic data which
we downloaded from redistrictingdatahub.org [18].
We also used the Gerrychain Python library from
MGGG to create random maps from this data.

5.1.2 Running the Chain

The total number of possible legal redistricting maps
for any state is far larger than it would be possible
to compute on any existing computer. Instead, we
sample from the space of all possible maps. Using
Markov Chain Monte Carlo methods we can obtain
a random, representative sample. These methods
have been proven to produce a true representative
sample of the space [19].

While the boundaries of congressional districts
can theoretically be drawn anywhere, we restrict
them to precinct boundaries. This simplifies our
computations, and precincts are small enough that
we can still draw districts with a realistic level of
granularity.

This allows us to represent redistricting maps as
dual graphs. Each node represents a precinct and
each edge represents a boundary between two adja-
cent precincts. Then each redistricting map is a dif-
ferent partition of this graph, with a certain number
of edges “cut” to create this partition. The follow-
ing definition precisely describes what we mean by
a cut edge.

Definition 5.1. A Cut Edge is an edge of the
dual-graph which connects two adjacent precincts
in separate districts. That is, an edge which is cut
when we partition the dual graph into districts.

Figure 5 demonstrates this concept. Another
definition relating to dual-graphs will become im-
portant later.

Definition 5.2. Let ε and ε′ be two districting
maps. A Cross Edge is an edge of the dual-graph
which is a cut edge in ε but not a cut edge in ε′. That
is, an edge which connects two adjacent precincts
that are in separate districts in ε but in the same
district in ε′.
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Figure 5: A toy state with 3 districts and 9 precincts. Each circle represents a precinct. The solid lines
show edges between adjacent precincts in the same district, and the dashed lines connect adjacent precincts
in different districts.

To run the chain, we start with a “seed map,”
which has to be some partition of the dual graph
into legal districts. We use the states’ previous
(2010) congressional districts, but proposed redis-
tricting maps or randomly generated maps are also
valid seeds.

Starting from the seed map, we use a recombina-
tion algorithm3 to reach the next map in the chain.
Recombination fuses two adjacent districts then ran-
domly splits them apart again to form a new map
[20] [21]. Figure 6 show the real action of the re-
combination algorithm in Minnesota.

Once a new map has been generated with re-
combination, we determine whether to add it to our
ensemble using an acceptance function to determine
how legal it is and simulated annealing to explore
the space of possible maps. Both are discussed in
more detail below.

If the map is accepted based on the acceptance
function, it is added to the ensemble and is used
to create another map using recombination, and the
process repeats. If the map is not accepted, we go
back to its parent map and re-do the recombination
until it generates a map which is accepted.

5.2 Score Function

In order to ensure that all maps in our ensemble are
legal, we must write a function which scores the le-
gality of any generated map in our chain. This leads
to another definition.

Definition 5.3. Let J be a function from the set of
maps in our ensemble to the positive, real numbers.
We say J is a score function when the output for

any map describes how well this map adheres to le-
gal requirements, with lower scores indicating more
legal maps.

Previous literature created a score function by
writing individual characteristic score functions to
evaluate population deviation, compactness, the
number of split counties, and Voting Rights Act
compliance for each map. The score function is
then a weighted sum of the four characteristic score
functions. We employ characteristic score functions
based on those used by [19] with some slight alter-
ations.

5.2.1 Population Score

In our ensemble, any generated map which has at
least two percent population deviation between dis-
tricts is outright rejected. However, not all maps
between zero and two percent population deviation
are equally legal. Thus, in this range, we apply the
following population score function.

For any map ε with n districts, the population
score is

JP (ε) =

√√√√ n∑
i=1

(
pop(Di(ε))

popideal
− 1

)2

where popideal =

n∑
i=1

pop(Di(ε))

n

with Di(ε) denoting the ith district in ε.
Notably, our score function allows districts

within a given map to differ by up to 2% from
the ideal population, though this does incur a score

3Previous approaches used a “flip” method which reassigns a single node (precinct) to a different district to generate a new
map. DeFord et. al. (2021) found that recombination better preserves compactness and increases the speed of convergence.
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Figure 6: The left map is our seed map, Minnesota’s 2010 congressional district map. In the center is the
second map in our chain, generated from the seed map using recombination. The right (and third) map is
generated from the second using recombination.

penalty. However, many proposed plans have dis-
tricts which vary in population by as few as one
person, based on the census data. For several rea-
sons, we have chosen to allow plans which vary in
population more than these plans.

Firstly, the census does not perfectly capture the
complete population, nor does it do so equitably.
Secondly, we are using census data from 2010, since
equivalent data to that which we are using has not
yet been processed and made available using the
2020 census and 2020 election results. Thirdly, we
wish to allow a broader exploration of the space of
all legal maps, and keeping the population cutoff at
2% accomplishes these goals without getting stuck
at some local minimum regarding population distri-
bution.

5.2.2 Compactness Score

For any map ε, our compactness score is calculated
as

JC(ε) =

n∑
i=1

perimeter(Di(ε))
2

area(Di(ε))

where perimeter(Di(ε)) and area(Di(ε)) are the
perimeter and area of the ith district of the map
ε. This is inversely proportional to the Polsby-
Popper compactness measure (which gives a score
in [0, 1] where 1 is most compact), and similar to
Schwartzberg. By flipping the numerator and de-
nominator, and taking out the factor 4π, we map
the Polsby-Popper measure onto the interval [4π,∞]
(where 4π is most compact).

5.2.3 Split County Score

Keeping counties fully within one district is always
preferred to splitting one county into two, or even
three districts. As such, we compute a score based
on the number of districts into which a county is
split.

Despite the fact that many states have laws ex-
plicitly restricting county splits, many existing re-
districting plans have chosen to split one or more
counties to achieve more desirable characteristics in
other metrics, such as equal population. Hence, we
need a score which penalizes splitting counties into
multiple districts, scaled by how “badly” they are
split, but which does not prohibit this splitting from
occurring.

We implement a split county score that scales
linearly with the number of counties that are split
and scales exponentially with the number of dis-
tricts into which a county is split. In order to do
so, we must define “district dominance” within a
given county, and its relation to the function Fi(s),
which is an important component in the split county
score function.

Definition 5.4. Given a county s, we define the
most dominant district in s to be the district
which has the highest proportion of its precincts lo-
cated within s. We may sort all districts which have
at least one precinct in s from most to least domi-
nant according to the proportion of precincts within
the district which fall within s.

We can now define the function Fi(s), which will
be used in the over county split score for a map ε.
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Definition 5.5. Let Fi(s) be the proportion of
precincts within a given county s that fall within
the top i dominant districts of s.

Note, a physically small (few total precincts) dis-
trict which is fully contained within a given county
is more dominant in that county than another dis-
trict which contains the remainder of the precincts
in the county but which has at least one precinct
outside the county.

We now define the split county score function,
modified from Herschlag, et al. [19], to be JS(ε) as
follows:

JS(ε) =

n∑
i=2

Ci−2 · |Si(ε)| ·Wi(ε)

where C = some large constant (> 1),

Si(ε) = {counties in ε split between ≥ i districts},

Wi =
∑
s∈Si

√
1− Fi−1(s).

Here i iterates over the number of districts split into
one county, the number of districts split into two
counties,..., the number of districts split into n coun-
ties; i does not iterate over particular districts (as
is common elsewhere in this paper). For example,
when i = 3, we are considering every county that is
split between at least three districts.

Observe that, in the term Wi, we consider
Fi−1(s) because we want to compute the proportion
of precincts in s that are not in the first i− 1 most
dominant districts. That is, if we have a county s
which is split into more than three districts, 1−F2(s)
is the proportion of precincts in s which lie outside
of the two most dominant districts of s. Thus, Wi

takes into account how “badly” a county is split into
districts contained in it. For example, if a county s
is split into three districts, but one of the districts
only has one precinct from s, then the corresponding
F2(s) term will be very large, and thus the contri-
bution of s to the W3 value in the split county score
will be very small.

5.2.4 Voting Rights Act (VRA)

Voting Rights Act (VRA) compliance of a map is
very hard to objectively assess. One approach in-
volves combining census and voting data to iden-
tify minority preferred candidates in past primary
and general elections, and then evaluating a re-
districting plan based on the number of districts
that would have elected minority preferred candi-
dates [22]. While this approach rigorously evaluates

the electoral opportunity for minorities under a re-
districting plan, the amount of data cleaning nec-
essary to link census and voting data is no small
task. Another approach, used by Herschlag, et al.,
seeks to fulfill demographic targets for each district
[19]. However, Herschlag, et al.’s demographic tar-
gets were based on the precedent set by North Car-
olina’s previous map, and seeking to fulfill demo-
graphic targets generally runs the risk of diluting
minority voting power by packing minority voters
into one district.

Given the difficulty of assessing VRA compliance
in a rigorous manner, coupled with the weakened
power of the VRA as a result of Shelby County v.
Holder, we decide not to include a VRA component
in our scoring function. To do so, we set the weight
wV = 0. However, we will still pay attention to
the demographic distribution across districts in the
analysis of our results, so we can still detect racial
and ethnic gerrymandering.

5.3 Weighting the Score Function

Our total score function for a map ε is then merely
a weighted sum of each of the above score functions:

J(ε) = wPJP + wCJC + wSJS + wV JV .

We sought for our composite score J for any
given map to have equal contributions from each of
the four characteristic score functions above. How-
ever, by nature of construction, not all score func-
tions lead to raw scores which are on the same order
of magnitude. For example, most population devia-
tion scores in Minnesota were found to be below 1
while several scores for split counties in Minnesota
were above 1,000.

To scale all of our scores to have similar mean
values, we computed the mean score value for each
characteristic in an unweighted ensemble. For ease
of comparison, scale this average to 100 for all three
characteristic score functions. So we set the weights
to be

wi =
100

mean score Ji

from a preliminary run of our ensemble. Our weights
for Minnesota are as follows:

wp = 3175, wc = 0.2686, ws = 0.10893, wv = 0.

Our weights for Texas are as follows:

wp = 1321, wp = 0.0515, ws = 0.00063345, wv = 0.
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5.4 Acceptance Function

The previously defined score function creates a score
for each map of how legal it is, with a lower score
indicating a better map. While scores have a lower
bound of 0, there is no upper bound on scores. In
generating our ensemble, we need a function which
turns this score into a probability distribution. This
leads to our next definition:

Definition 5.6. An Acceptance Function is a
function which maps from the set of possible maps to
[0, 1] and gives a probability for how likely it is that
map will be chosen in an MCMC algorithm. This
Acceptance Function is based on the Score Function
defined above.

Definition 5.7. Let ε be a map produced by the
chain and let ε′ be a new map proposed from ε by
the chain. We call ε the Parent Map and ε′ the
Child Map.

Given a proposed child map ε′ from a parent
map ε, let P (ε′|ε) be the probability of accepting ε′

defined as follows:

P (ε′|ε) = min

(
1,

Q(ε′, ε)

Q(ε, ε′)
e
−β

(
J(ε′)−J(ε)

J(ε)

))
,

where β is the simulated annealing factor (see Sec-
tion 5.4.1 below) and

Q(ε, ε′) =
1

2
· cross edges(ε, ε

′)

cut edges(ε)
.

Observe that the term Q(ε′,ε)
Q(ε,ε′) is then half the

proportion of cut edges in ε which flip to being un-

cut in ε′. Thus, Q(ε′,ε)
Q(ε,ε′) yields a value greater than

one when the child map ε′ has districts with more
complicated borders and more cut edges than the
parent map ε. This term of the acceptance func-
tion, then, acts to assist the chain in exploring maps
which are different and more complicated than the
parent map, allowing us to better sample the entire
space of legal maps.

This acceptance function is very similar to that
defined by Herschlag, et al. However, the function
used in Herschlag, et al. does not divide the dif-
ference J(ε′) − J(ε) by J(ε), as we do in our equa-
tion. Note that if the difference is not divided by
the score of the parent map, then the absolute mag-
nitude of scores affects the probability of accepting
the child map. That is, if the score of the child map
and the score of the parent map are scaled linearly
while keeping the ratio between them constant, the
probability of accepting the child map changes. In

particular, if the magnitudes of the scores increase
proportionally, then the probability of accepting a
child map which has a higher score than the parent
map decreases; if the child map has a lower score
than the parent map, it is always accepted anyway.

We wanted the flexibility to change the ratio
of the weights between the different score function
components without affecting the overall probability
accepting. As such, we decided to divide the differ-
ence between the score of the child map and the
score of the parent map by the score of the parent
map.

5.4.1 Simulated Annealing

When using a MCMC algorithm with a score func-
tion, we choose more legal maps at a higher proba-
bility than less legal maps. Once at a given map, we
are more likely to choose a child map which has a
better score than the parent map than a child map
with a worse score than the parent map. If we follow
this method exclusively, however, it has been found
that the MCMC chain may get stuck at local maxi-
mum. That is, all nearby maps in the space of maps
have worse scores (are less legal), and so we will not
choose these maps. There may, outside of this lo-
cus, be maps with even better scores than the local
maximum. In order to avoid getting stuck at these
local maxima, we implement an inverse temperature
constant known as a simulated annealing constant.

Definition 5.8. A Simulated Annealing Con-
stant β serves as a multiplier on the Score Func-
tion output for a given child map in calculating the
probability of accepting this child map with the Ac-
ceptance Function. This parameter β begins at 0
and grows gradually throughout the progress of an
MCMC chain to a determined maximum value.

For our analysis, we set β = 0 for the first 10, 000
accepted maps. Then for the next 60, 000 maps β
grows linearly from 0 to 23.5. The final 80, 000 maps
are generated with β = 23.5. As a result of dividing
the difference between the child and parent scores
by the parent score, we can speak about the general
probability of accepting a child map with a score
worse than its parent based on the ratio of their
scores, for some given β. In particular, note that
J(ε′)−J(ε)

J(ε) gives a measure of how much worse the

child map is than the parent: if J(ε′)−J(ε)
J(ε) = 0.05,

we say that the child map ε′ is 5% worse than the
parent map ε. We chose β = 23.5 in order to get
an acceptance rate that we desired for worse maps.
See below for a table which shows the approximate
probabilities of accepting a child map ε′ from parent
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ε according to how much greater J(ε′) is than J(ε),

assuming Q(ε′,ε)
Q(ε,ε′) ≈ 1:

J(ε′)−J(ε)
J(ε) P (ε′|ε)
0.00 1.0
0.01 0.79
0.02 0.63
0.05 0.31
0.10 0.10
0.20 0.02

Using recombination to generate new maps from
previous maps, the acceptance function to decide
whether these maps are sufficiently legal, and sim-
ulated annealing to explore the space of map, we
can now generate ensembles by running chains for
Minnesota and Texas.

5.5 Analysis Techniques with
Ensemble Analysis

For each partisan metric described above, we gen-
erate a histogram of all of the values found in our
ensemble maps. We can then compare the value of
this metric for the maps of interest we are analyz-
ing to the distribution of values in our ensemble to
understand how “unusual” the map of interest is for
a random, legal map of the state. We consider how
many standard deviations the value for the map of
interest lies away from the mean of the distribution
for all values in the ensemble.

5.5.1 Gathering Data on Proposed Maps

To generate metrics for maps of interest, we run a
chain of length one with each map as the seed map.
We then are able to determine all of the metric val-
ues computed with the exact same data as with our
ensemble. Note that the values for efficiency gap and
mean-median we compute are different from those
reported on 538.com and other sites online. This
is due to the fact that we are using relatively old
election data and averaging over several elections.

5.6 Data Visualization

To generate our graphs we used the Tidyverse pack-
age in R [23]. Our graphs are built from the data of
700, 005 maps in our ensemble for each state. Met-
rics for Minnesota and Texas are computed as the
averages over a series of past elections.

For Minnesota, we have data for the following
elections:

• 2012, 2014, 2016, 2018 State House

• 2012, 2016 State Senate

• 2012, 2014, 2016, 2018 US House

• 2012, 2014, 2018 US Senate

• 2012, 2016 US Presidential

• 2014, 2018 Governor

For Texas, we have data for the following elec-
tions:

• 2012, 2014, 2016 US House

• 2012, 2014 US Senate

• 2012, 2016 US Presidential

• 2014 Governor

5.6.1 Score Function Histograms

We created histograms for the distributions of the
total score (Figures 31 and 35), population score
(Figures 32 and 36), county score (Figures 34 and
38), and compactness score (Figures 33 and 37).
This allowed us to easily see the behavior of our
chain and relative contribution of each component
to the total score. These can be found in the appen-
dices.

5.6.2 Partisan Metric Histograms

Each partisan metric for each state was plotted as a
histogram, where the Minnesota 2010, 2020, and two
proposed maps as well as the Texas 2010 map were
plotted as vertical lines at their respective scores
for the measure. We plotted additional lines at the
mean, as well as some standard deviation intervals
to more easily detect where each of the maps of in-
terest fell in our distribution. See Figures 7,8,9,10,
12,13,19,20,21,22,23,25,and 26.

5.6.3 Ordered Districts Box Plots

In order to have some way to look at relative levels of
packing and cracking amongst different demograph-
ics, we created a box plot modeled off those seen in
Herschlag, et al. [19].

As our chain generated new maps, district bor-
ders were continually being reshaped and reordered.
Our resulting maps had districts ordered 1 − 8 in
Minnesota and 1 − 36 in Texas. However, due to
this recombination, the resulting district numbers
were arbitrary—the meaning of district 1 for the
100th map in our chain was entirely different than
the meaning of district 1 for the 100, 000th map in
our chain. Therefore, in order to look at district-
level results across our chain, we needed to use some
other method of ordering our districts.
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The first way we chose to order the districts for
each map was by Democratic vote share (Figures 14,
15, and 27). To do this, we chose an election of inter-
est, and computed Democratic vote share (DV Si) to
be:

DV Si =
Dem votes in district i

Total votes in district i

where i ∈ {1, ..., 8}, for each district in Minnesota
and i ∈ {1, ..., 36} for Texas. For each map, we
then reassigned district labels in increasing order of
this democratic vote share. From there we plotted
the box plot for each district, where each box plot
showed the democratic vote share distribution of the
district with ith smallest democratic vote share for
each map in our ensemble.

We used the same method when creating the
box plots for voting age population (Figures 16 and
28), Black proportion of voting age population (Fig-
ures 17 and 29), and Hispanic proportion of voting
age population (Figures 18 and 30). Specifically,
the voting age population was a metric included for
each district, so we reordered districts based on this
value.

The black proportion of voting age population
for each district (BV Si) was computed as:

BV Si =
Black voting age pop. in district i

Voting age pop. in district i

The Hispanic proportion of voting age popula-
tion for each district (HV Si) was computed as:

HV Si =
Hispanic voting age pop. in district i

Voting age pop. in district i

5.6.4 Seats Votes Curves

To generate seats votes curves for each state, we
used the “Political Science Computational Labora-
tory” (pscl) package in R [24]. This is a package de-
veloped by Simon Jackman at the University of Syd-
ney. This package uses the uniform swing method
to generate the output seats votes curves.

Each seats votes line output required a string
containing the vote share of a given party in each
district. We used the vote share numbers calculated
in box plot calculations and ordered districts in the
same manner. To get a single string, we averaged
the value for each district over all the maps in our
ensemble. See Figures 11 and 24.

6 Results

6.1 Function of Our Chain

6.1.1 Simulated Annealing

We run five different chains of 150, 000 accepted
maps for each state (starting with the seed map)
to produce a total of 750, 000 maps for each state.
Since β = 0 for the first 10, 000 accepted maps in
the chain, the acceptance function for these 10, 000
maps does not take into account the score of each
map. Thus, we may be generating maps which do
not adhere well to legal criteria during this part of
the chain. As a result, in our analysis, we cut out
the first 9, 999 maps from our analysis, leaving us
with 700, 005 maps in our ensemble for each state.

6.2 Minnesota

Our results for Minnesota are based on the 700, 005
maps included in our ensemble. We overlaid par-
tisan metric scores for the 2010 map, two of the
proposed plans (neither of which ended up being ac-
cepted), and the 2020 court approved redistricting
map.

6.2.1 Democratic and Republican Seats

In Figures 7 and 8 we graph the number of Demo-
cratic and Republican seats, respectively, in a given
map, averaged across all of our elections. This al-
lows for maps which have a non-integer number of
Democratic and Republican seats. Note the mean
number of Democratic seats is 5.052 and the stan-
dard deviation is 0.303.

The Sachs Plaintiff plan falls almost exactly on
the mean for Democratic seats. The 2020 map falls
just inside−1 standard deviation, the 2010 map falls
just outside−1 standard deviation, and the Wattson
Plaintiff plan falls to the left of the 2010 plan (within
−2 standard deviations). The Sachs plan is thus the
most typical for our ensemble. The remaining three
analyzed maps show slightly more Republican bias
than the most typical maps in our ensemble; how-
ever, the number of Democratic seats is not entirely
unusual.

6.2.2 Efficiency Gap

The efficiency gap scores for our ensemble is given
in Figure 9. The mean score for efficiency gap in
our Minnesota ensemble is 0.042, and the standard
deviation is 0.039. This indicates that many of the
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maps in our ensemble have a bias towards the Demo-
cratic party, with most maps leading to fewer wasted
Democratic votes than wasted Republican votes.

The Sachs Plaintiff plan falls almost exactly on
the mean for efficiency gap. That is, the Sachs plan
is extremely typical for our ensemble. The 2020
map falls just inside -1 standard deviation, the 2010
map falls just outside -1 standard deviation, and the
Wattson Plaintiff plan falls farther to the left than
the 2010 map. Thus, the 2020 plan, 2010 plan, and
Wattson plan all demonstrate more Republican bias
than many plans in our ensemble, but they are not
entirely unusual.

6.2.3 Mean Median

The mean-median scores for our ensemble are given
in Figure 10. The mean score for mean-median in
our Minnesota ensemble is −0.017, and the standard
deviation is 0.011. This indicates that many of the
maps in our ensemble have a Republican bias. All of
the proposed and accepted maps have similar levels
of bias to that of maps in our ensemble.

The Sachs Plaintiff plan falls just to the right
of the mean for mean-median. That is, the Sachs
plan favors Democrats slightly more than the aver-
age plan in Minnesota. The 2020 map and Wattson
plan both fall around 1 standard deviation to the left
of the mean. That is, these maps demonstrate slight
Republican bias, but they are not wholly unusual
for the ensemble maps in Minnesota. The 2010 map
falls the farthest to the left (indicating more Repub-
lican bias), but again isn’t entirely unusual for the
ensemble maps.

6.2.4 Seats-Votes Curve

Democratic and Republican seats-votes curves are
given in Figure 11 The Republican curve is above
the Democratic curve at values of vote share close
to the observed election, meaning most maps in our
Minnesota ensemble have a slight bias in favor of the
Republican party.

6.2.5 Partisan Bias

The partisan bias scores for the Minnesota ensem-
ble are given in Figure 12. The mean partisan bias
in our Minnesota ensemble is −.068, indicating that
Minnesota has a slight natural bias that favors Re-
publicans. None of the proposed maps are unusual
in the context of our ensemble, each falling within a
standard deviation of the mean. While the Wattson
plan and 2020 map are further from the mean that

the Sachs plan, both are more fair than the 2010
map.

6.2.6 Partisan Gini

The partisan gini scores for the Minnesota ensemble
are given in Figure 13. Recall, unlike all other met-
rics, partisan gini takes on only positive values, and
higher scores indicate not bias for one party in par-
ticular, but rather, discrepancies in the vote share
necessary to gain a particular seat share. That is,
higher partisan gini values only indicate that the
districting map contains bias, but not which party
the bias favors.

The mean partisan gini score for our Minnesota
ensemble is 0.039, indicating that the maps in our
ensemble contain some amount of natural bias. Note
that this makes sense because the average Demo-
cratic and Republican seats-votes curves for Min-
nesota (see Figure 11) are not identical.

6.2.7 Democratic Vote Share by District

To create Figure 14, we considered every map in
our ensemble with districts ordered by proportion of
Democratic voters. For instance, the box on the left
shows that throughout our ensemble the least demo-
cratic districts voted slightly less than 50% demo-
cratic on average.

Minnesota residents might consider this odd, as
the state is known to be purple. However, this
plot uses the Senate 2018 election to determine who
voted Democratic. Due to Amy Klobuchar’s pop-
ularity from both parties, this paints a picture of
Minnesota as mostly Democratic.

Figure 15, on the other hand, uses the same
method but with the 2016 presidential election.
Here we see that on average in our ensemble, three
districts voted more than 50% Democratic. In both
these figures, we can see that the proposed and ac-
tual maps sometimes fall in the upper or lower quar-
tiles, indicating that they are more or less Demo-
cratic than we would expect based on our ensemble.
However, none of the maps ever fall in the outliers
in our expected range.

6.2.8 Black Voting Age Population by Dis-
trict

Figure 17 is similar but instead of the proportion
of Democratic voters, shows the proportion of Black
voters. We see that in Minnesota, every plan has
roughly the number of Black voters we expect from
the ensemble. That said, the districts with the most
Black voters in the real and proposed plans all have
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more Black voters than most of the ensemble, pos-
sibly indicating cracking of these voters.

This figure does also illustrate the distribution
of the Black population in Minnesota. Many dis-
tricts – that is, most of the state – have few Black
residents, and a few districts have many times more
Black residents.

6.2.9 Hispanic Voting Age Population by
District

Similarly, Figure 18 shows the distribution of His-
panic Minnesotan voters. However, there are some
districts with noticeably more Hispanic voters than
expected, showing possible packing.

6.3 Texas

Our results for Texas are based on the 700, 005 maps
included in our ensemble. We overlaid partisan met-
ric scores for the 2010 map.

6.3.1 Democratic and Republican Seats

Figures 19 and 20 show the average number of
Democratic and Republican seats respectively won
across the state averaged across several election re-
sults. As with Minnesota, this is why we find maps
which take on non-integer values for the number of
Democratic and Republican seats.

We see that the mean number of Democratic
seats won in Texas averaged across all elections is
11.42. The 2010 map falls exactly on this mean.
Given the extensive media discussion of the presence
of gerrymandering in Texas’s 2010 map, as well as
extreme outlier values for additional partisan met-
rics below, we further explored how the Texas 2010
map could have the appropriate number of Demo-
cratic and Republican seats but such bias in the
seats-votes curve and such extensive cracking and
packing. Note that all but one Texas election we
have data for occurred before 2015, with the most
recent election being the 2016 presidential election.
Hence, the values averaged across all elections in the
Texas ensemble have a bias towards older Texas elec-
tions. We wanted to explore whether voter prefer-
ences across the state of Texas had, in fact, changed
over the course of the decade.

In Figure 21, we graph the number of Demo-
cratic seats won in each ensemble map using only
2012 senate election data (light green) and only 2016
presidential election data (darker green). Note the
number of Democratic seats won across the entire
ensemble is shifted to the right when using the 2016
presidential election data, indicating that a higher

proportion of voters cast Democratic votes in the
2016 presidential election than in the 2012 senate
election. The 2010 map then falls on the mean for
Democratic seats using 2012 senate election data,
but looks to be an outlier when using 2016 presi-
dential election data.

While unique outcomes can occur when look-
ing at just one election, since in reality individuals
vote for particular candidates and not just parties,
this figure tells an interesting story. In 2012 when
the 2010 Texas map was recently put in place, the
number of Democratic seats lined up appropriately
with what would be expected given our ensemble.
However, as the decade went on, voter preferences
changed—likely due to growth of cities in Texas—
and a higher proportion of Texas voters voted for
Democratic candidates. Thus, in 2016, the 2010
map allotted far fewer seats to Democratic candi-
dates than would be expected in a random, legal
map. Hence, as the decade went on, the Texas 2010
map became more gerrymandered.

6.3.2 Efficiency Gap

The mean efficiency gap over our Texas Ensemble,
seen in Figure 22, is −0.047 with a standard devi-
ation of 0.024, demonstrating that the maps in our
ensemble show a bias towards the Republican party.
The 2010 Texas map has an efficiency gap of −.085,
falling between −1 and −2 standard deviations away
from the mean. This means the 2010 Texas map
demonstrates substantial Republican bias; however,
it does not have more bias than is present in many
random, legal maps generated in our ensemble.

6.3.3 Mean-Median

The mean mean-median value over our Texas en-
semble, seen in Figure 23, is −0.022 with a stan-
dard deviation of 0.013, indicating again that the
maps in our ensemble show bias towards the Repub-
lican party. The 2010 Texas map has a mean-median
value of −.042, falling between −1 and −2 standard
deviations away from the mean. This means the
2010 Texas map again demonstrates substantial Re-
publican bias; however, it does not have more bias
than is present in many random, legal maps gener-
ated in our ensemble.

6.3.4 Seats-Votes Curve

The average Republican seats-votes curve for all
maps in our ensemble and the Republican seats-
votes curve for the 2010 Texas map are both shown
in Figure 24. The curve for the Republican party
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is slightly above the line y = x at values close
to the observed election result, demonstrating that
Texas has a small natural bias that favors Republi-
cans. However, the curve for the 2010 map demon-
strates substantially more bias favoring the Repub-
lican party.

6.3.5 Partisan Bias

The mean partisan bias for maps in our Texas en-
semble, seen in Figure 25, was −.049, indicating a
slight natural bias that favors the Republican party.
However, the partisan bias for the 2010 map falls
over three standard deviations away from the mean,
providing substantial evidence of a partisan gerry-
mander.

6.3.6 Partisan Gini

Recall, unlike other measures, the partisan gini takes
on only positive values, with higher values indicat-
ing more bias in a districting map. The partisan
gini score does not indicate which party is favored,
however.

Figure 26 shows the partisan gini scores for our
enesmble. In our Texas ensemble, the mean par-
tisan gini score is 0.041, indicating Democrats and
Republicans gain different seat shares at the same
vote shares throughout our whole ensemble. The
2010 Texas map lies over +3 standard deviations
away from the mean, demonstrating that the two
parties have even more disparate seat shares at the
same vote shares under this districting plan. Be-
cause this map is such an outlier, this is evidence of
gerrymandering.

6.3.7 Democratic Vote Share Distribution
by District

Figure 27 shows the Democratic vote share for dis-
tricts in our ensemble, ordered from the district
with lowest Democratic vote share to highest Demo-
cratic vote share in each districting plan. In sev-
eral instances, the 2010 map falls above/below the
box, indicating that there is a higher/lower propor-
tion of Democratic voters in that district than in
many maps in our ensemble. In districts 32 through
35, however, the 2010 Texas map is an outlier on
the upper range of Democratic vote share, mean-
ing these districts contain a higher Democratic vote
share than is present in nearly all maps in our en-
semble. This shows that the 2010 Texas map packs
Democratic voters into a few districts far more heav-
ily than tends to occur in a random, legal map. This

is evidence of gerrymandering in Texas’ bluest dis-
tricts, like in Austin and and San Antonio.

6.3.8 Voting Age Population Distribution
by District

In Figure 28 we can see that the distribution of vot-
ers ranges from below 480, 000 to above 520, 000,
and is more varied than the distribution of residents
across districts, which is legally controlled.

6.3.9 Black Voting Age Population Distri-
bution by District

Figure 29 shows similar though more extreme re-
sults for the Texas Black voting age population. In
most districts there are about as many, or fewer,
Black voters in each district than expected from our
ensemble. However, in the three districts with the
with the most Black voters, there are more than in
any map in our ensemble, showing strong evidence
of packing in these districts; that is to say, racial
gerrymandering.

6.3.10 Hispanic Voting Age Population Dis-
tribution by District

Similarly to the previous section, in Figure 30, we
can see that in the 28th to 32nd most Hispanic dis-
tricts, Hispanic voters are packed. In Texas’ two
most Hispanic districts, the 2010 map has many
fewer Hispanic voters than we expect from our en-
semble, showing that those districts are cracked.

7 Discussion

7.1 Minnesota Map

In Minnesota, the four analyzed maps largely fell at
values which indicate slightly more Republican bias
than the mean values for all maps in our ensemble.
However, these analyzed maps were never quite out-
liers, indicating that while they do take on Republi-
can bias, they are not substantially more biased than
several random, legal maps. Hence, we are unable
to conclude that the 2010, 2020, Wattson Plaintiff,
or Corrie Plaintiff plans are gerrymandered.

7.2 Texas Map

In Texas, the 2010 map is an outlier for Democratic,
Black, and Hispanic votes share distribution, parti-
san bias, and partisan gini. In addition, using 2016
presidential data, the 2010 map is an outlier in terms
of Democratic seat share, and it may be an outlier
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using this data for efficiency gap and mean-median,
although we did not compute these values with 2016
election data alone. We can thus conclude that the
2010 Texas map is highly unusual as compared to
random, legal maps for the state. Hence, there is
strong evidence that both partisan and racial gerry-
mandering is present in the 2010 Texas map.

Although we cannot make claims directly about
the 2020 Texas map, the media has consistently
reported that the 2020 Texas map possesses even
more partisan and racial gerrymandering than was
present in the 2010 map [25, 26]. Since we found
strong evidence of both types of gerrymandering in
the 2010 map, it is then likely that political and
racial gerrymandering are both present in the 2020
map as well.

7.3 General Ensemble Analysis
Findings

In general, we found the maps produced in our en-
semble in Minnesota took on values closer to 0 for
several partisan metrics than the maps produced
in our ensemble in Texas. That is, random, legal
maps in Texas tend to exhibit greater bias towards
the Republican party than random, legal maps in
Minnesota. Herein lies the importance of ensem-
ble analysis—all Minnesota maps would appear to
be less gerrymandered than Texas maps if they were
analyzed only using the values of these partisan met-
rics. Ensemble analysis, however, allows us to com-
pare just how unusual a particular map is, demon-
strating that maps with less extreme partisan metric
values in one state may still be more unusual–and
thus potentially more gerrymandered—than maps
which take on more extreme partisan metric values
in another state.

7.4 Limitations and Future
Directions

The most significant limitation to our analysis was
the quality of data available to us. We relied upon
2010 census data, since the 2020 census data had not
been cleaned and merged with voting records yet in
a way that was available to us. This means that
our population numbers and our population distri-
bution is outdated. When comparing to the 2010
Texas map, this is not hugely significant. However,
when looking at newer maps in Minnesota, we split
districts into roughly equal population based on old
population numbers. Thus, the maps in our ensem-
ble may not be entirely legal maps chosen today, as
a result of changing population values.

In order to somewhat mitigate this problem, we
placed lower weights on the population score in our
scoring function, allowing our produced ensemble
maps to have a higher population deviation than
is present in any of the approved maps. In this way,
we allowed some room for error in where population
grew in Minnesota, such that the maps in our en-
semble map have a population distribution that is
acceptable for the 2020 census results.

Once 2020 census data is available in the nec-
essary format, rerunning our analyses to look at
2020 maps would yield more reliable results. Ad-
ditionally, this data would allow for direct analysis
of the 2020 Texas map with the two added districts
in 2020, giving a better method for analyzing the
accepted 2020 map.

Additionally, the election data we had access to
was limited. While voting patterns don’t appear to
have substantially changed in Minnesota over the
past decade, this was not the case in Texas. We
conducted the Democratic seat-share analysis us-
ing multiple elections in order to understand the
way voting patterns shifted to somewhat mitigate
our lack of more recent data in Texas. Nonethe-
less, our older voting data makes our predictions
on how districts would vote under a new district-
ing map less reliable. Once more recent election
data is available—especially several elections from
2018 and 2020—rerunning our analyses would pro-
vide more reliable results on the level of gerryman-
dering present in 2020 maps.

Furthermore, we didn’t conduct any rigorous sta-
tistical tests on our results. While we visually com-
pared the metrics for the plans we analyzed to the
distribution, we did not conduct t-tests to determine
how unusual these values are. Additional statistical
testing on our results would yield a greater under-
standing of the levels of gerrymandering present in
various maps.

In terms of our methodology, there are some
places where additional considerations could lead to
stronger analyses. Most notably, we did not con-
duct a rigorous process for determining the weights
for score metrics in our overall score function, such
as that conducted by Herschlag, et al. Identifying a
process to determine how much each score compo-
nent should contribute to the overall score function,
and how this should vary by state, would result in
an ensemble with maps that better adhere to the
legal criteria in each state. In addition, producing
an analysis such as that done by Moon Duchin on
VRA compliance would additionally yield an ensem-
ble which contains more legal maps.

Finally, running our analysis on additional states
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would lead to broader results about the levels of un-
derlying bias present in various states as well as the
presence or absence of partisan and racial gerryman-
dering in state-wide redistricting maps.
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Appendices

A Minnesota Results Figures

Figure 7: Distribution of average Democratic seats across the Minnesota ensemble. Lines are placed at scores
of the 2010 map, 2020 map, Sachs Plaintiff plan, and Wattson Plaintiff plan. The mean falls at 5.052.
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Figure 8: Distribution of average Republican seats across the Minnesota ensemble. Lines are placed at scores
of the 2010 map, 2020 map, Sachs Plaintiff plan, and Wattson Plaintiff plan. The mean falls at 2.948.
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Figure 9: Distribution of Efficiency Gap Scores across the Minnesota ensemble. Lines are placed at scores
of the 2010 map, 2020 map, Sachs Plaintiff plan, and Wattson Plaintiff plan. The mean falls at 0.04197.
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Figure 10: Distribution of Mean Median Scores across the Minnesota ensemble. Lines are placed at scores
of the 2010 map, 2020 map, Sachs Plaintiff plan, and Wattson Plaintiff plan. The mean falls at -0.01679.
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Figure 11: The average Democratic and Republican seats-votes curve of our Minnesota ensemble.
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Figure 12: Distribution of Partisan Bias Scores across the Minnesota ensemble. Lines are placed at scores of
the 2010 map, 2020 map, Sachs Plaintiff plan, and Wattson Plaintiff plan. Note, the line for the 2010 map
lies directly underneath the line for the 2020 map. The mean falls at -0.06776.
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Figure 13: Distribution of Partisan Gini Scores across the Minnesota ensemble. Lines are placed at scores
of the 2010 map, 2020 map, Sachs Plaintiff plan, and Wattson Plaintiff plan. The mean falls at 0.03901.
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Figure 14: Box plot of Democratic vote share by district for each map, with the districts being ordered from
least Democratic to most Democratic. Results are computed using 2018 Senate Election Results. Dots are
placed at Democratic vote shares in each district of the the 2010 map, 2020 map, Sachs Plaintiff plan, and
Wattson Plaintiff plan.
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Figure 15: Box plot of Democratic vote share by district for each map, with the districts being ordered from
least Democratic to most Democratic. Results are computed using 2016 Presidential Election Results. Dots
are placed at Democratic vote shares in each district of the the 2010 map, 2020 map, Sachs Plaintiff plan,
and Wattson Plaintiff plan.
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Figure 16: Box plot of voting age population by district for each map, with the districts being ordered from
least Democratic to most Democratic. Results are computed using 2016 Presidential Election Results. Dots
are placed at voting age population in each district of the the 2010 map, 2020 map, Sachs Plaintiff plan, and
Wattson Plaintiff plan.
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Figure 17: Box plot of Black voting age population by district for each map, with the districts being ordered
from least Democratic to most Democratic. Results are computed using 2018 Senate Election Results. Dots
are placed at Black voting age population for each district of the the 2010 map, 2020 map, Sachs Plaintiff
plan, and Wattson Plaintiff plan.
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Figure 18: Box plot of Hispanic voting age population by district for each map, with the districts being
ordered from least Democratic to most Democratic. Results are computed using 2018 Senate Election
Results. Dots are placed at Hispanic voting age population for each district of the the 2010 map, 2020 map,
Sachs Plaintiff plan, and Wattson Plaintiff plan.
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B Texas Results Figures

Figure 19: Distribution of average Democratic seats across the Texas ensemble. The mean falls at 11.42,
with standard deviation of 0.896.
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Figure 20: Distribution of average Republican seats across the Texas ensemble. The mean falls at 24.58,
with standard deviation 0.896.
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Figure 21: Distribution of Democratic seats across our ensemble for both the 2012 Presidential election and
2016 Presidential election.
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Figure 22: Distribution of Efficiency Gap Scores across the Texas ensemble. The mean falls at -.047. The
line is placed at the efficiency gap value of the 2010 map.
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Figure 23: Distribution of Mean Median Scores across the Texas ensemble. The mean falls at -0.022. The
line is placed at the mean median value of the 2010 map.
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Figure 24: The average Republican seats-votes curve of our Texas ensemble (in red) compared with the
Republican seats-votes curve for the 2010 map (in orange).
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Figure 25: Distribution of Partisan Bias Scores across the Texas ensemble. The mean falls at −.049. The
line is placed at the partisan bias value of the 2010 map.
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Figure 26: Distribution of Partisan Gini Scores across the Texas ensemble. The mean falls at .041. The line
is placed at the partisan gini value of the 2010 map.
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Figure 27: Box plot of Democratic vote share by district for each map, with the districts being ordered from
least Democratic to most Democratic. Results are computed using 2016 Presidential Election Results. Dots
are placed at Democratic vote shares in each district of the the 2010 map.
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Figure 28: Box plot of voting age population by district for each map, with the districts being ordered from
least Democratic to most Democratic. Results are computed using 2016 Presidential Election Results. Dots
are placed at voting age population in each district of the the 2010 map.
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Figure 29: Box plot of Black proportion of voting age population by district for each map, with the districts
being ordered from least Democratic to most Democratic. Results are computed using 2016 Presidential
Election Results. Dots are placed at Black proportion of voting age population in each district of the the
2010 map.
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Figure 30: Box plot of Hispanic proportion of voting age population by district for each map, with the districts
being ordered from least Democratic to most Democratic. Results are computed using 2016 Presidential
Election Results. Dots are placed at Hispanic proportion of voting age population in each district of the the
2010 map.
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C Minnesota Scores

Figure 31: The distribution of total score J(ε) for 700,005 used maps in our Minnesota ensemble. The mean
falls at 386.8.
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Figure 32: The distribution of population score Jp(ε) for 700,005 used maps in our Minnesota ensemble.
The mean falls at 82.5.
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Figure 33: The distribution of compactness score Jc(ε) for 700,005 used maps in our Minnesota ensemble.
The mean falls at 142.6.
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Figure 34: The distribution of county score Jc(ε) for 700,005 used maps in our Minnesota ensemble. The
mean falls at 161.8.
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D Texas Scores

Figure 35: The distribution of total score J(ε) for 700,005 used maps in our Texas ensemble. The mean falls
at 279.6177.
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Figure 36: The distribution of population score Jp(ε) for 700,005 used maps in our Texas ensemble. The
mean falls at 88.5613.
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Figure 37: The distribution of compactness score Jc(ε) for 700,005 used maps in our Texas ensemble. The
mean falls at 180.3355.
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Figure 38: The distribution of split counties score J2(ε) for 700,005 used maps in our Texas ensemble. The
mean falls at 10.72092.
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