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1 Introduction to Rook Numbers

A rook is a type of chess piece that can move only along the column or row it
is in, and so can only capture another chess piece which is in the same column
or row as it is. A single space on any board may not be occupied by more than
one rook. Therefore, in order to place some number of rooks on an otherwise
empty board (that is, a board with no chess pieces present) such that no rook
will be able to capture any other rook, each row or column can have no more
than one rook present.

Definition 1. A board is a set of squares arranged in rows and columns (as on
a chessboard) such that “rooks” may only be placed on squares within this set.
A subboard B1 of a board B is a board composed of a subset of the squares in
B.

In the diagrams which follow in this paper, squares which are part of the
given board are darkened, while there may remain white squares to indicate
alignment of rows or columns. Note that boards need not resemble n×n chess-
boards, but the squares in the board may take any form so long as they remain
in definite rows and columns.

Definition 2. A rook number is the number of ways to place k rooks on a
given board B such that each row and column of the board each have at most
one rook. The rook number for a given k and B is denoted rk(B). The rooks
on such a board can be said to be “mutually non-capturing”.

By convention, because there is one way to place zero rooks on any given
board, r0(B) = 1 for all B.

2 Placing Rooks on “Simple” Boards

Given a board with n rows and n columns, where a rook may be placed onto
any square, how many ways are there to place k (with 0 ≤ k ≤ n) mutually
non-capturing rooks on this board? An example of this can be seen in Figure
1. We may break this question into several components. First, we must choose
onto which of the n rows we will place our k rooks. Since we cannot choose the
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Figure 1: An 8 × 8 board with 8 non-capturing rooks.

same row more than once, and the order in which we choose the rows does not
matter, the number of ways to choose k rows from n total rows will be given by(
n
k

)
. We can use the same process to determine onto which of the columns our

k rooks will be placed, so this is also given by
(
n
k

)
. Thus, the total number of

ways to choose the k rows and k columns is given by
(
n
k

)(
n
k

)
.

Now, we have a set of possible squares onto which our rooks may be placed.
Pick some arbitrary row out of the k rows you’ve selected. Then there are k
ways to place a rook in this row since there are k available columns in this row
and no other rooks have yet been placed. Proceed to another row. Since a rook
has already been placed in one of the columns, another rook cannot be placed
in that same column, so there are k − 1 ways to place a rook in this row. We
can generalize: for the ith rook you are placing, there will be k− i ways to place
this rook on the board because k − i rows and columns will be occupied by the
previous rooks you have placed. Thus, the number of ways to place k rooks
given k rows and k columns is k× (k− 1) × (k− 2) × ...× (k− i) × ...× 1 = k!.

Therefore, the total number of ways to place k rooks on an n × n board is
given by (

n

k

)(
n

k

)
k! (1)

This problem becomes more complex when you limit the positions in which
the rooks may be placed on the board. We may call any square where a rook
may not be placed “unavailable”. Take, for example, a 4× 4 grid where the top
left corner is unavailable, as in Figure 2.

Figure 2: A chessboard where the top left square is “un-
available”.
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Let us try to place four rooks on this board in order to build an intuition
for a way to approach calculating the rook numbers of small boards which have
some unavailable squares.

In the example given by 2, we can see that in the top row, we have three
choices for the placement of a rook. For the next row, we have three choices,
since all columns are available except the one in which a rook was placed in the
first row. Similarly, we have two choices for the third row, and one choice for
the final row. Thus, the total number of ways to place four rooks on the board
is given by 3 × 3 × 2 × 1 = 18.

However, what if there are unavailable tiles elsewhere in the board such that
we cannot so easily count the number of ways to place non-capturing rooks on
the board, as we did for the board in Figure 2? Such a board is shown in Figure
3.
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Figure 3: A chessboard with internal “unavailable” squares.

In this case, it may be beneficial to our intuition if we rearrange some of the
rows and columns of the board such that unavailable squares are “clustered”
together. Note that there is no inherent interaction between rows and columns,
nor between distinct rows or distinct columns. In other words, the rows and
columns are arbitrarily ordered on the board. Thus, we may arbitrarily rear-
range rows and columns without affecting the rook number of the board. Figure
4 shows a rearrangement of the rows and columns of the board in Figure 3 so
that the unavailable squares are clustered.
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Figure 4: A rearranged chessboard with “unavailable”
squares clustered.

Now, we may take the same approach to counting the number of ways to
place four rooks as we took for figure 2.

Note: This is not a rigorous approach to solving problems of this variety.
However, this provides an intuition about how to simplify problems such that
the more rigorous tools we are about to develop can be applied more easily.
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3 Rook Polynomials

Up to this point, we have considered how to count the number of ways to place
a fixed k number of rooks on a given board. However, we can also consider the
number of ways to place k non-capturing rooks for all k ≥ 0.

Definition 3. A rook polynomial of a given board B is a polynomial where
the coefficient of the xk term is the number of ways to place k non-capturing
rooks on the board B. The rook polynomial, denoted R(x,B), is thus given by

R(x,B) = r0(B) + r1(B)x + r2(B)x2 + ...

=

∞∑
k=0

rk(B)xk (2)

Note: A rook polynomial can be considered a “generating polynomial” for
the rook numbers. As we will see in Theorem 1, this means that rook polyno-
mials behave much like generating functions. We can apply our knowledge of
the behavior of products of generating functions to rook polynomials.

Figure 5: An example board for which we can calculate the
rook polynomial.

Consider the 2 × 2 board B in Figure 5. There will always be one way to
place zero rooks on any board, so r0(B) = 1. Since there are four tiles on our
2×2 board, there are four ways to place a single rook on B, so r1(B) = 4. There
are two ways to place two non-capturing rooks on B, so r2(B) = 2. There is no
possible way to put more than two mutually non-capturing rooks on a board
with only 2 columns and 2 rows, so rk(B) = 0 for k > 2.

Thus, we can construct the rook polynomial for B as follows:

R(x,B) = r0(B) + r1(B)x + r2(B)x2

= 1 + 4x + 2x2
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4 Decomposition into Disjoint Subboards

It may be the case that we have a large board with many available squares
scattered throughout the board. Rather than consider all the positions of the
board as a whole, it may be of benefit to be able to split the board into sub-
boards for which we are more easily able to calculate the rook numbers and
rook polynomials.

Definition 4. We define subboards B1 and B2 to be disjoint subboards if and
only if there does not exist any square in B1 that shares a row or column with
any square in B2. We refer to a board as decomposable if and only if it has
two or more disjoint subboards.

Lemma 1. If B is a board of darkened squares that decomposes into two disjoint
subboards B1 and B2, then

rk(B) = rk(B1)r0(B2) + rk−1(B1)r1(B2) + ... + r0(B1)rk(B2)

=

k∑
i=0

rk−i(B1)ri(B2)
(3)

Proof. We can show Lemma 1 combinatorially. Consider the ways to place k
rooks on B. All rooks will either be placed on B1 or B2. If there are i rooks
(such that 0 ≤ i ≤ k) placed on subboard B1, then there will be k − i rooks
placed on subboard B2. Because each subboard has unique rows and columns,
the arrangement of rooks within B1 is independent of the arrangement of rooks
within B2. Therefore, there are ri(B1)rk−i(B2) ways to place i rooks in B1 and
k − i rooks in B2.

To find the total number of ways to distribute k rooks across a board B, we
take the sum of the products of the rook numbers ri(B1) and rk−i(B2) for all
possible values of i. Hence,

rk(B) =

k∑
i=0

ri(B1)rk−i(B2)

Theorem 1. If B is a board that decomposes into the two disjoint subboards
B1 and B2, then

R(x,B) = R(x,B1)R(x,B2) (4)

Proof. We have from the definition of a rook polynomial that R(x,B) =
∑∞

k=0 rk(B)xk.

We have from Lemma 1 that rk(B) =
∑k

i=0 rk−i(B1)ri(B2). Thus,
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R(x,B) =

∞∑
k=0

rk(B)xk

=

∞∑
k=0

[
k∑

i=0

rk−i(B1)ri(B2)

]
︸ ︷︷ ︸

Substitute j for k − i

xk

=

∞∑
k=0

 ∑
i,j≥0
i+j=k

rj(B1)ri(B2)

xk

=

∞∑
i,j

rj(B1)ri(B2)xi+j

=

∞∑
j=0

rj(B1)xj
∞∑
i=0

ri(B2)xi

= R(x,B1)R(x,B2)

Note: In this proof, we see that the coefficients of the xk term multiplied just
as coefficients of generating functions do, and that the resulting product of rook
polynomials is likewise comparable to the product of generating functions.

5 Nondecomposable Boards

Consider some board B for which B is not decomposable into two disjoint
subboards. Say you want to place k rooks on B. Consider some square s,
such that we can break the problem into two mutually exclusive cases based on
whether there is a rook on s or not. In Figure 6, we see an example board on
which we will apply this process:

s

Figure 6: An example of a non-decomposable board.

Case 1: If there is a rook on s, define B∗s to be the subboard of B given by
removing s as well as all squares in the same row and column as s. Then there
remain k − 1 rooks to placed on B∗s . We define the two disjoint subboards as
we see in our example below as B∗s1 and B∗s2 .
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s

B∗s1

B∗s2

Figure 7: The subboards created from the board in Figure
6 by placing a rook on s.

Case 2: If there is not a rook on s, define Bs as the subboard of B created
when the square s is removed from B. Then there remain k rooks to be placed
on Bs. We can define the two disjoint subboards as created in this example case
as Bs1 and Bs2 .

s

Bs1

Bs2

Figure 8: The subboards created from the board in Figure
6 by removing s (such that no rook can be placed on s).

Since these two cases represent whether or not there is a rook on s, they are
mutually exclusive. So we can take the total number of ways to place k rooks
on B as the sum of the number of ways to do so given that one of these rooks is
not placed on s and the number of ways to do so given that one of these rooks
is placed on s.

Lemma 2. The rook polynomial of a board B with a square marked s as de-
scribed above is given by

rk(B) = rk(Bs) + rk−1(B∗s ) (5)

Note that observing the the recurrence relation for k = 0 requires defining
the r−1(B) term for rk−1(B∗s ), which is undefined. So the recurrence only holds
for k ≥ 1.

We can use Lemma 2 to calculate the number of ways to put two rooks on
our example board:

r2(B) = r2(Bs) + r2−1(B∗s )

= r2(Bs1)r0(Bs2) + r1(Bs1)r1(Bs2) + r0(Bs1)r2(Bs2)

+ r1(B∗s1)r0(B∗s2) + r0(B∗s1)r1(B∗s2)

= ((0)(1) + (3)(2) + (1)(0)) + ((2)(1) + (1)(1))

= 6 + 3

= 9
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Theorem 2. The rook polynomial for a non-decomposable board with a given
square labeled s is equal to the sum of the rook polynomial of the board Bs where
s is removed and the rook polynomial of the board B∗s where s and every square
in the same row or column as s are removed (as if a rook has been placed at s)
multiplied by x.

R(x,B) = R(x,Bs) + xR(x,B∗s ) (6)

Note: It is useful to choose an s which breaks up the board as evenly as
possible into two subboards. Then, the problem of finding rk(B) can be split
into two cases as detailed above.

Proof. Recall, we have from the definition of a rook polynomial that R(x,B) =∑∞
k=0 rk(B)xk. Thus,

R(x,B) =

∞∑
k=0

rk(B)xk

= 1 +

∞∑
k=1

rk(B)xk

= 1 +

∞∑
k=1

[rk(Bs) + rk−1(B∗s )]xk

= 1 +

∞∑
k=1

rk(Bs)x
k +

∞∑
k=1

rk−1(B∗s )xk

︸ ︷︷ ︸
Let k = k + 1

= 1 +

∞∑
k=1

rk(Bs)x
k +

∞∑
k+1=1

r(k+1)−1(B∗s )xk+1

= 1 +

∞∑
k=1

rk(Bs)x
k + x

∞∑
k=0

rk(B∗s )xk

= 1 +

∞∑
k=1

rk(Bs)x
k + xr0(B∗s )x0 + x

∞∑
k=1

rk(B∗s )xk

= 1 +

∞∑
k=1

rk(Bs)x
k + x + x

∞∑
k=1

rk(B∗s )xk

= 1 +

∞∑
k=1

rk(Bs)x
k + x

[
1 +

∞∑
k=1

rk(B∗s )xk

]

=

∞∑
k=0

rk(Bs)x
k + x

[ ∞∑
k=0

rk(B∗s )xk

]
= R(x,Bs) + xR(x,B∗s )
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6 Application of Theorems 1 and 2 to a complex
board.

We now have the tools to calculate the rook polynomials of more complicated
boards. Figure 9 shows such a board, which will be denoted B.
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A B C D E F

Figure 9: A relatively complex board B.

Before we can begin to divide this board into disjoint subboards, we ought
to simplify the work ahead by clustering available squares as much as possible.
A good deal of copying and checking of work may result in a clustered board
similar to that in Figure 10.
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B1

B2

Figure 10: The board B from Figure 9 rearranged to illus-
trate clustering and divided into disjoint subboards B1 and
B2.

Now, we can see in Figure 10 that the board can be broken up into two
disjoint subboards B1 and B2, as labeled in the figure. Thus, by Theorem 1, we
have that

R(x,B) = R(x,B1)R(x,B2)

The problem is now to calculate the rook polynomials of B1 and B2.
Beginning with B1, we would like a way to split the subboard into two

disjoint subboards. Theorem 2 gives us a way to do so by marking the square
at coordinates (A, 2) as s, as shown in Figure 11, so that

R(x,B1) = R(x,Bs) + xR(x,B∗s )
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s

Figure 11: The subboard B1 with s marked.

By Theorem 2, we consider these two cases:
Case 1: A rook is placed on the square marked s. In this case, we now have

two disjoint subboards B∗s1 and B∗s2 , as shown in Figure 12.

s

B∗s1

B∗s2

Figure 12: The subboard B∗s , which is a subboard of B1

where we assume a rook is placed at the square marked s.
We may now divide B∗s into two subboards B∗s1 and B∗s2 .

We can use the same procedure as we did to calculate the rook polynomial
of Figure 5 to find the rook polynomials of Bs1 and Bs2 . Since these are disjoint
subboards, we also have from Theorem 1 that R(x,B∗s ) = R(x,B∗s1)R(x,B∗s2).

R(x,B∗s ) = R(x,B∗s1)R(x,B∗s2)

R(x,B∗s1) = r0(B∗s1) + x(r1(B∗s1)) = (1 + 2x)

R(x,B∗s2) = r0(B∗s2) + x(r1(B∗s2)) = (1 + 2x)

R(x,B∗s ) = (1 + 2x)(1 + 2x)

= 1 + 4x + 4x2

Case 2: No rook is placed on the square marked s. In this case, we have
two disjoint subboards Bs1 and Bs2 , as shown in Figure 13.

s

Bs1

Bs2

Figure 13: The subboard Bs, a subboard of B1. We assume
no rook will be placed on s and accordingly divide Bs into
two subboards Bs1 and Bs2 .

The rook polynomials of Bs1 and Bs2 can be calculated relatively easily. We
can again apply Theorem 1 because Bs1 and Bs2 are disjoint.
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R(x,Bs) = R(x,Bs1)R(x,Bs2)

R(x,Bs1) = r0(Bs1) + x(r1(Bs1)) + x2(r2(Bs1)) = 1 + 3x + x2

R(x,Bs2) = r0(Bs2) + x(r1(Bs2)) + x2(r2(Bs2))1 + 3x + x2

R(x,Bs) = (1 + 3x + x2)(1 + 3x + x2)

= 1 + 6x + 11x2 + 6x3 + x4

Thus, we may now use Theorem 2 to calculate the rook polynomial for B1.

R(x,B1) = R(x,Bs) + x(R(x,B∗s ))

= (1 + 6x + 11x2 + 6x3 + x4) + x(1 + 4x + 4x2)

= 1 + 7x + 15x2 + 10x3 + x4

Figure 14: The subboard B2

We can easily determine the rook polynomial for the subboard B2. That is:

R(x,B2) = r0(B2) + r1(B2)x + r2(B2)x2 + ...

= 1 + 3x + x2 + 0...

= 1 + 3x + x2

Now that we have R(x,B1) and R(x,B2), we can finally apply Theorem 1
to find R(x,B) for our original board B.

R(x,B) = R(x,B1)R(x,B2)

R(x,B) = (1 + 7x + 15x2 + 10x3 + x4)(1 + 3x + x2)

R(x,B) = 1 + 10x + 37x2 + 62x3 + 46x4 + 13x5 + x6
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