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Abstract

In this paper, we explore “sandpiles”, which represent an arrange-
ment of “chips” on the vertices of a graph. We build up an understand-
ing of the form and behavior of sandpiles, as well as define notation
which allows us to rigorously describe sandpiles. We also prove vari-
ous properties of sandpiles, such as that any unstable sandpile can be
stabilized to a finite sandpile, and that the operation of adding sand-
piles followed by stabilization is commutative. From these, we define a
“sandpile group” of particular sandpiles over some graph. We describe
some properties of sandpile groups, and end with two examples.

1 Introduction

Sandpiles are mathematical structures that have been invented independently
several times throughout the history of mathematics [1]. Sandpiles exhibit in-
teresting algebraic behavior in that, while certain sandpiles can be combined
to create groups, the binary operation of addition followed by stabilization
is much less intuitive than operations typical to groups such as the integers
and the dihedral groups. As a result, the group behavior of sandpiles is much
less obvious. This paper spends the bulk of its effort covering the proper-
ties of sandpiles to argue that sandpiles, under certain circumstances, can
be thought of as groups. In the last section, we look at some example sand-
pile groups and observe how the properties of these groups interact with the
properties of sandpiles.
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2 What Are Sandpiles?

Consider a graph G made by connecting vertices from a set V using edges.
Firstly, we would like to assign each vertex of G a degree, d, based on how
many edges connect to that vertex.

Definition 1. For any graph G with vertices V , the degree of a vertex v ∈ V ,
denoted deg(v), is the number of ends-of-edges which connect to v. [1]

Aside: Simple graphs are graphs where for any two distinct vertices vi
and vj, the number of edges between vi and vj is either 0 or 1, and for any
vertex vi, the number of edges directly connecting vi to itself is equal to
0. For simple graphs, the degree of a vertex v is equal to the number of
connections leading from that vertex to another vertex in the graph that are
direct, in that they do not pass through any intermediary vertices.

Now at each vertex of the graph, we will place a non-negative amount of
“chips”.

Definition 2. The chip count of a vertex v, denoted count(v), is the number
of chips at v.

These chips can be thought of as poker chips, coins or any other indistin-
guishable item.

Definition 3. We call a vertex a stable vertex if its chip count is less than its
degree, if its chip count is greater than its degree we call it an unstable vertex
[1]

For example, if a vertex a has degree 4 and a chip count of seven, it is
unstable. If it has a chip count of 3, it is stable.

Definition 4. A sandpile is a function which maps each vertex of a graph
to a non-negative integer. We call this non-negative integer the number of
chips placed on that vertex. [1]

The function mentioned in Definition 4 can be written out more formally.
For a graph G with vertices V , as a sandpile σ over G is a function σ :
V → Z+ + {0} given by σ(v) = count(v). For this paper, (and others in
the literature [1]), we do not rely heavily on this function understanding of
a sandpile.
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Notice that we can add two sandpiles of a shared graph together quite
simply, as the number of chips at any given vertex of the resulting sandpile is
equal to the sum of the number of chips at that vertex in both of the initial
sandpiles. More formally, for a graph G with vertices V , the sum of two
sandpiles σ and τ over G is given by the function σ + τ : V → Z+ + {0} by
(σ + τ)(v) = σ(v) + τ(v).

Lemma 1. For sandpiles σ and τ over a graph G, σ + τ = τ + σ

Proof. Take some vertex a. We will denote the chip count of a vertex a of a
sandpile δ to be countδ(a). Using the fact that integer addition is commuta-
tive, and the definition of sandpile addition we can show that countσ+τ (a) =
countσ(a) + countτ (a) = countτ (a) + countσ(a) = countτ+σ(a).

Definition 5. A stable sandpile is a sandpile where the chip count of each
vertex is less than the degree of the vertex. If a sandpile has has one or more
vertices in which the chip count is greater than or equal to the degree vertex
we say it is an unstable sandpile. [1]

We can topple an unstable vertex by distributing one chip from the vertex
to each adjacent vertex which is connected via an edge to the vertex that is
being toppled. More formally, toppling a vertex moves one chip along each
edge connected to that vertex. It is possible that toppling one vertex may
cause an adjacent vertex to also become unstable. [1]

What would happen if we toppled a vertex that was stable? The result
would not be a sandpile, however mathematically it will prove useful to
include these structures. We will say that toppling a stable vertex results in
an illegal sandpile.

Definition 6. An illegal sandpile, is a function that maps the vertices of
a graph to the integers, where at least one vertex is mapped to a negative
integer.

Aside: For this paper, we are primarily focused on simple graphs, which
are graphs without multiple edges and without loops from a vertex to itself.
However, toppling behaves similarly on non-simple graphs as well. For exam-
ple, if more than one edge connects two vertices, then toppling one of those
vertices causes more than one chip to be moved during toppling. In particu-
lar, if k edges connected two vertices vi and vj, then k chips are moved from
vi to vj when vi is toppled. Likewise, if a vertex is connected to itself via one
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or more loops, toppling that vertex moves one chip along each end-of-edge
connected to that vertex back to itself, leaving the chip count unchanged due
to the edges that loop from the vertex to itself. Thus, loops from a vertex to
itself have no effect on any other vertex on the graph, but they do increase
the “chip capacity” of the vertex, which is the maximum number of chips
which can be on a given vertex before that vertex becomes unstable. The
properties of sandpiles over non-simple graphs are worthy of study. How-
ever, for the rest of this paper, unless otherwise stated, assume that we are
working with simple graphs, and that the phrase “connected graph” means
a simple undirected connected graph.

2.1 Seeking Stability

We can use toppling to stabilize an unstable vertex. For example, consider
the complete graph G with vertices v1, v2, v3 ∈ V , where there is a single
edge connecting each vertex, so deg(v1) = deg(v2) = deg(v3) = 2. Let the
sandpile σ be given by count(v1) = count(v2) = 0, and count(v3) = 2. Since
count(v3) ≥ deg(v3), then σ is unstable. If we topple v3, then we end up with
a new sandpile τ with count(v1) = count(v2) = 1 and count(v3) = 0, where
τ is stable. Thus, we successfully stabilized an unstable sandpile σ into a
stable sandpile τ using toppling.

Definition 7. For a graph G with vertices V , let the set of sandpiles over G

be denoted ZV . Let the set of stable sandpiles over G be denoted M = {σ ∈
ZV |σ is stable} [1].

The majority of this paper focuses on finite graphs. However, if we con-
sider an infinite connected graph with finitely many chips on it, we see that
over time, toppling unstable vertices will distribute the chips over more of the
(infinite) vertices, and eventually achieve a stable sandpile [2]. This is true,
abstractly, due to entropy, but also follows intuitively from the behavior of
toppling. Thus, any sandpile with finitely many chips over an infinite graph
can be stabilized.

Lemma 2. Let G be a graph with vertices V , then if the total number of
chips in a given sandpile σ over G is less than

∑
v∈V (deg(v)−1), then σ can

be stabilized in a finite number of topples.

Proof. This follows from the fact that each topple distributes chips among
vertices, and vertices can topple iff there are at least as many chips on the
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vertex as the degree of that vertex. Since G is connected, then the chips will
become more evenly distributed over time. Thus, after a finite number of
topples, any unstable sandpile can be stabilized.

This lemma also follows directly from Theorem 1, which will be discussed
below.

In a worst case scenario, consider the graph which is a line of n vertices,
with the first vertex having (n − 2) chips and all other vertices having 0
chips. One can visualize how, over time, the chips on the first vertex would
propogate across the remaining vertices, finally reaching a stable sandpile
with 0 chips on the first vertex and last vertex and 1 chip on all remaining
vertices.

We would like to introduce a method through which any unstable sandpile
can become stable, but this is not yet possible for all finite graphs. Consider
a graph with three vertices, v1, v2 and v3 in which each vertex is connected
to the other two. We then place one chip on vertices v1 and v2, and two
chips on vertex v3. Vertex v3 is unstable, so we topple it, but then vertices
v1 and v2 are unstable. In fact there exists no arrangement of these chips
such that each vertex is stable, there are two many chips in the sandpile. We
need some way to remove chips from the graph.

Definition 8. For a graph G with vertices V , a sink is a vertex vs ∈ V in a
sandpile in which the chip count of vs is ignored, and any chip which lands in
vs from the toppling of a nearby vertex is removed from the sandpile entirely.

Note: For this paper, we will restrict the placement of the sink so that
the sink cannot be located at a vertex on the graph which if removed from
the graph, would leave the graph no longer connected.

The addition of sinks allows us to remove chips from the sandpile. If, in
our above example, we assign v1 to be the sink, then when we topple v3, v2
remains unstable, but a chip is “lost” to the sink v1. When we then topple
v2 another chip is lost and we are left with a stable configuration, where
count(v2) = 0 and count(v3) = 1.

In general, we can stablilize a sandpile by toppling unstable vertices of
the sandpile until every vertex is stable. However, it remains to show that
we can stabilize any sandpile in a finite number of topplings.

Theorem 1. For any connected graph G with a vertex designated as the
sink, any sandpile on G with finitely many chips is reducible to a stabilized
sandpile through a finite number of topplings.
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Proof. Towards a contradiction, assume that an infinite number of topplings
can occur to a sandpile σ without σ becoming stabilized. Then there exists
at least one vertex vj in the graph which is toppled an infinite number of
times. Since vj is toppled an infinite number of times, then it sends an infinite
number of chips to each adjacent vertex. Each of those adjacent vertices can
thus be toppled an infinite number of times without the sandpile becoming
stabilized. Since the graph under σ is connected, then every vertex on the
graph can be reached from every other vertex on the graph, and thus every
vertex on the graph receives an infinite number of chips from the infinite
number of topples of its adjacent vertices, and can itself be toppled an infinite
number of times. If there is no sink, then this is possible with a finite number
of chips. However, since the sink is connected to at least one other vertex,
then the sink receives an infinite number of chips from that vertex. Therefore,
the total number of chips in the sandpile must have been infinite, which is
a contradiction. Thus, with a finite number of chips on a sandpile over a
graph with a sink, the sandpile must be stabilizable in a finite number of
topples.

3 Vector Notation for Sandpiles

Consider again a connected graph G with vertices V , where |V | = n. Number
the vertices in V from 1 to n, so vi denotes the ith vertex for 1 ≤ i ≤ n. We
can define the adjacency matrix of G to be an n×n matrix A, where entries
ai,j is equal to the number of edges between vi and vj for vi, vj ∈ V . If G
is simple, then the diagonal entries ai,i = 0 for all 1 ≤ i ≤ n, and all non-
diagonal entries are either 0 or 1. For this G, we can also define the degree
matrix of G to be an n×n diagonal matrix D with di,i = deg(vi), and di,j = 0
for all i 6= j [2].

Now, we can define the Laplacian of G as the n×n matrix L = D−A [2].
This matrix includes a row and column for the sink, so by removing that row
and column, we can get the reduced Laplacian matrix [2]. The jth column
of this matrix nearly encodes the effects of toppling the jth vertex, but the
result is actually the opposite. Thus, if we negate the reduced Laplacian, we
get an (n − 1) × (n − 1) matrix ∆ where (from [1]) the entry in the v row
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and w column is given by

∆v,w =


− deg(v) if v = w

1 if v is adjacent to w

0 otherwise

Theorem 2. The Matrix-Tree Theorem: The number of spanning trees
of G is equal to the determinant of the reduced Laplacian matrix ∆. (This is
discussed in [1] and [2]).

Let ∆j be the jth column of ∆. If we have a sandpile σ, then toppling
the jth vertex is equivalent to adding ∆j to σ.

One immediate benefit of writing toppling in this vector notation is that
it allows us to show that the order in which we topple sandpiles does not
matter

Theorem 3. Let σ be a sandpile with vertices vk and vj. Then toppling vk
and then vj will result in the same sandpile, legal or illegal, as toppling vj
and then vk.

Proof. Take the two vertices vj and vk. We have shown that toppling a
vertex, vj, of a sandpile σ can be expressed as the addition of two vectors
σ + ∆j. Then toppling vj and then vk is expressed as σ + ∆j + ∆k. Because
vector addition is commutative, σ + ∆j + ∆k = σ + ∆k + ∆j regardless of
which vj, vk is chosen.

Since toppling is a commutative operation, then we can think about a
series of topples as a single unit.

Definition 9. A topple series is a column vector encoding a sequence of

topples, where the value in the jth entry in the column vector is equal to the
number of times the jth vertex is toppled.

We can represent a single toppling of vj as tj, which is a unit vector with
a 1 in the entry corresponding to vj, and 0 in all other entries. For some
unstable sandpile σ which can, by toppling v1 a times, toppling v2 b times,
etc., produce another sandpile τ which may or may not be stable. This topple
series is given by

α = at1 + bt2 + . . . =

ab
...

 , whereσ + ∆α = τ.
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Any topple series α can be broken down into a sum of smaller topple
series, where each topple series has nonzero values in each entry. The sum of
the entries in the topple series is the number of individual topples which form
the topple series, and we call this sum the “length” of the topple series. A
topple series whose entries sum to 1 encodes a single topple, tj, corresponding
to toppling vertex vj; such a topple series can be said to have length 1. It
can be very useful to break down a topple series into a sum of topple series
of length 1, or, equivalently, into individual topples. In general, we denote
the elements of a topple series α by the order which we carry them out, so
a topple series of length n can be represented as α = α1 + α2 + . . . + αn,
where each αj has length 1 and encodes a single toppling tk of a vertex, vk.
Note that the j in the subscript of αj denotes the position of the topple in
the topple series, while the k in the subscript of tk denotes that vk is being
toppled. The subscripts of αj and tk are unrelated.

Furthermore, any topple series α can be broken down in several different

ways. For example, let α =

1
2
1

, so the length of α is 4. Once we decide

on the order in which the four topples takes place, we can represent these
individual topples as α = α1 + α2 + α3 + α4. One such order is α1 = t2,
α2 = t1, α3 = t3, α4 = t2. Another equally valid order is α1 = t2, α2 = t1,
α3 = t3, α4 = t2. Note as well that since the order of topples is commutative,
then α = α1 + α2 + α3 = α4 = α3 + α1 + α2 + α4 = α. If σ + ∆α is a legal
sandpile, then it may be the case that after some number of αj ∈ α less than
the length of α, we have an illegal sandpile (i.e. a sandpile with a negative
number of chips on some vertex). This is acceptable, since we know that
after completing all topples in α, the resulting sandpile will again be legal.

4 Properties of Sandpiles

Lemma 3. Let
∑n

j=1 αj be a toppling series, and tk is the toppling of a vertex

k where tk 6= αj for all j. If σ + ∆tk is a legal sandpile, and σ + ∆
∑i

j=1 αj

is a legal sandpile for all i from 0 to n, then σ + ∆tk + ∆
∑i

j=1 αj is also a
legal sandpile for all i from 0 to n.

Proof. Towards a contradiction, assume that there exists some set of integers
I such that for all i in I σ + ∆tk + ∆

∑i
j=1 αj is an illegal sandpile. It is
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given that σ+ ∆tk is a legal sandpile, so there must be some i in I such that
σ + ∆tk + ∆

∑i−1
j=1 αj is a legal sandpile. This implies that ai must topple a

vertex that is unstable in σ+ ∆
∑i

j=1 αj, but stable in σ+ ∆tk + ∆
∑i

j=1 αj.
This means that ai = tk, but by assumption tk 6= aj for all j.

Theorem 4. If two topple series α and β are distinct and for some sandpile
σ, both σ + ∆α and σ + ∆β are not illegal, then either σ + α or σ + β is
unstable.

Proof. By induction. Without loss of generality let |α| ≥ |β|.
Base case: |α| = 1. α has one element, so this implies that there is a

vertex in σ that is unstable. Because β 6= α, σ + ∆β still has that unstable
vertex, so the sandpile given by σ + ∆β is unstable.

Inductive step: Say that for any two topple series, γ and ζ, where γ
has length n and ζ has length less than or equal to n, if both σ + ∆γ and
σ + ∆ζ are (legal) sandpiles, then either σ + ∆γ or σ + ∆ζ is unstable.

Consider α = α1 + γ, a topple series of length n+ 1, and β of length less
than or equal to α. If the first element of α, α1, is not an element of β, then
the vertex toppled by α1 remains unstable in σ + ∆β. If α1 is in β, then β
can be written as β0 + α1 + β1 where α1 is not an element of β0. This can
safely be rewritten as α1 + β0 + β1 by Lemma 3. This transforms σ + ∆α
into (σ + ∆α1) + ∆γ and σ + ∆β into (σ + ∆α1) + ∆β0 + ∆β1 where β + β1
has a length less than or equal to the length of γ.

Corollary 1. For any sandpile σ, stabilizing σ will always result in the same
stable sandpile.

Proof. Theorem 1 gives that for any sandpile σ, σ can be stabilized in a
finite number of topples. Theorem 4 gives that for any initial sandpile σ if
two distinct topple series α and β are applied to σ, then it cannot be the case
that both σ + ∆α and σ + ∆β are stable. Therefore, there cannot be two
distinct stable sandpiles which are stabilized from the same initial sandpile
σ.

Theorem 5. Let σ1, σ2 be sandpiles over a given graph G with reduced
Laplacian matrix −∆. If there exists a vector α such that σ1 + ∆α = σ2,
then α is unique.

Proof. Imagine there exists two vectors α and β with components α1, α2,...,
αn and β1, β2,..., βn such that σ1 + ∆α = σ2 and σ1 + ∆β = σ2. Then

9



∆α = ∆β. Expanding the vector-matrix multiplication yields

α1∆1 + α2∆2 + ...+ αn∆n = β1∆1 + β2∆2 + ...+ βn∆n.

We can then rearrange this equation to read

(α1 − β1)∆1 + (α2 − β2)∆2 + ...+ (αn−1 + βn−1)∆n−1 = (βn − αn)∆n.

The matrix ∆ has a non-zero determinant [2], which by a property of linear
algebra implies that the columns of ∆, where the kth column is denoted ∆k,
are linearly independent vectors. Therefore the only solution to this equation
is

(α1 − β1)∆1 + (α2 − β2)∆2 + ...+ (αn−1 + βn−1)∆n−1 = (βn − αn)∆n = 0

which, for linearly independent vectors implies that α1−β1 = 0, α2−β2 = 0,
..., αn − βn = 0, and thus α = β.

Corollary 2. When stabilizing a sandpile, the number of times a specific
vertex is toppled is independent of the sequence the vertices are toppled in.
Further, every sequence of topples which stabilizes a sandpile will have an
identical length.

5 Sandpiles as Groups

There are several facts about sandpile groups which are worth stating, even
if their proofs are beyond the scope of this paper. They are listed here.

Theorem 6. The set of all stable sandpiles on a graph, M , is a commutative
monoid under sandpile addition followed by stabilization [1]. That is to say
for all a, b, c in M

� a+ b is in M

� (a+ b) + c = a+ (b+ c)

� There exists an e such that ae = ea = a

� a+ b = b+ a

Note that in the case of the above theorem the identity of M is often not
the identity of a group which happens to be a subset of M .
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Definition 10. The sandpile group on a graph G, denoted K(G), is the
minimum ideal of M [1].

Theorem 7. K(G) is independent of the choice of sink, up to isomorphism
[1].

This theorem can be worded as meaning that for some graph G with
vertices a and b, the sandpile groups generated by selecting a or b as the
sink, K(G)a and K(G)b, are isomorphic; K(G)a ≈ K(G)b.

Theorem 8. The sandpile group is an Abelian group under sandpile addition
followed by stabilization [1].

Theorem 9. K(G) = ZV /∆ZV , and the determinant of ∆ is the index of
∆ZV in ZV (from [1]).

Aside: Since the determinant of ∆ is the index of ∆ZV in ZV , then the
determinant of ∆ is equal to |ZV /∆ZV | = |K(G)|. This gives us a relatively
easy way to determine the order of K(G) for any graph G, since ∆ can be
computed for any G.

Corollary 3. The order of K(G) is equal to the number of spanning trees of
G.

Proof. This follows from Theorems 2 and 9.

5.1 An Example Group

Let’s consider the graph, G, of four vertices, s, a, b and c connected by four
edges where s only connects with a, b connects to a and c, and c also connects
to a as seen in Fig. 1. If we identify s as the sink, can we create a group out
of the different stable sandpiles on this graph?

If we use the vector notation σ =

count(a)
count(b)
count(c)

 to denote a stable sandpile.

We can find M , the set of all stable sandpiles on G to have elements0
0
0

,

0
1
0

,

0
0
1

,

0
1
1

,

1
0
0

,

1
1
0

,

1
0
1

,

1
1
1

,

2
0
0

,

2
1
0

,

2
0
1

 and

2
1
1

.
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Figure 1: An example graph, G. If we take s to be the sink, a has degree 3
and b and c have degree 2. There are twelve unique stable sandpiles on G. G
also contains three spanning trees, implying that |K(G)| = 3. The reduced
Laplacian matrix of G is ∆, given by

∆ =

−3 1 1
1 −2 1
1 1 −2

 .
M has 12 elements, does this mean that M is a group under addition

followed by stabilization isomorphic to either Z/12Z or Z/6Z⊕Z/2Z? Inter-
estingly the answer is no [1] [2]. While M is closed, associative and has an

identity element, not every element has an inverse. In fact

2
1
1

+

2
1
1

 =

2
1
1

,

suggesting that if

0
0
0

 were the identity of M ,

2
1
1

 would have infinite order.

This is not allowed in a finite group.

The set H =


2

1
1

 ,
2

0
1

 ,
2

1
0

 is, however, a group under addition

with e =

2
1
1

. As far as we are aware there is no perfect method for finding

this group, however Theorem 8 & Corollary 3 were helpful in constructing
this group. While we did not prove that in this case H = K(G) we did notice
that |H| = |K(G)| as predicted from Corollary 3, and σK(G) was contained
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in K(G) for all σ we calculated, suggesting that H = K(G) by Theorem 8.

For example, we calculated that

{1
0
0

 ,
0

1
1

 ,
1

1
1

}
+

2
1
1

 =

2
1
1

. While

we would need to calcualte this for every element of M in order to prove that
H = K(G), this is strong evidence.

5.2 A Different Sink

Let us consider the same graph G as shown in Fig. 1 from the previous
subsection, but this time choose c to be the sink. We will then define a

sandpile σ using the notation σ =

count(s)
count(a)
count(b)

. The elements of the new M

for this sink are

0
0
0

,

0
1
0

,

0
0
1

,

0
1
1

,

0
2
0

 and

0
2
1

. The observation that

we now have an M of order 6 instead of order 12 is not entirely surprising as
we replaced our sink of order 1 with a sink of order 2.

If Corollary 3 is accurate, the order of K(G) should remain at 3 despite

the decrease in M . The set F =


0

1
1

 ,
0

2
0

 ,
0

2
1

 turns out to be a

group with e =

2
1
1

, although again we did not prove that F is the sandpile

group for this graph and sink we are fairly confident it is. The fact that
H ≈ F ≈ Z/3Z is another interesting result predicted by Theorem 7, which
lends credence to our belief that H and F are the sandpile groups.
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